965 resultados para 111-677


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fifty samples of basalt recovered during ODP Leg 111 from the dikes (Layer 2C) of Hole 504B (1350.0-1562.3 m below seafloor) were analyzed by X-ray-fluorescence techniques. All of the samples are highly depleted in magmaphile elements relative to other mid-ocean ridge basalts, with TiO2 = 0.75-1.24 wt%, Na2O = 1.59-2.22 wt%, Zr = 38-64 ppm, Nb = 0.3-1.5 ppm, and Y = 20-30 ppm (for samples containing 0%-2% phenocrysts), but have ratios of highly incompatible elements similar to normal Type I mid-ocean ridge basalts (e.g., Zr/Nb > 30). Abundances of compatible elements are similar to those of typical mid-ocean ridge basalts, with MgO = 7.2-9.2 wt%, Fe2O3* = 9.3-12.5 wt%, Ni = 55-164 ppm, and Cr = 26-388 ppm. Approximately 2% of the samples recovered from the top part of Hole 504B are similar to normal Type I or Type II ocean floor basalts. However, all of the analyzed Leg 111 samples from Hole 504B are depleted basalts. Aphyric dike rocks from Leg 111 are virtually identical to the depleted aphyric samples recovered from the pillow lavas and dikes in the upper 1075 m of Hole 504B during DSDP Legs 69, 70, and 83, with the exception of elements readily altered by seawater (Sr, Rb, and K). These elements reach a maximum in both abundance and variability in the pillow lavas of the upper 571.5 m of Hole 504B and decline to more constant values in the dike system sampled on Legs 83 and 111, apparently as a result of a decrease in porosity and increase in alteration temperatures relative to the pillow lavas. Based on compositional similarities to the vast majority of the pillows and flows, the dikes sampled on Leg 111 appear to be the feeder system for the pillow lavas in the upper part of Hole 504B. The incompatible-element-depleted compositions of the Costa Rica Rift Zone basalts are consistent with multistage melting of a normal mid-ocean ridge source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work in this sub-project of ESOP focuses on the advective and convective transforma-tion of water masses in the Greenland Sea and its neighbouring areas. It includes observational work on the sub-mesoscale and analysis of hydrographic data up to the gyre-scale. Observations of active convective plumes were made with a towed chain equipped with up to 80 CTD sensors, giving a horizontal and vertical resolution of the hydrographic fields of a few metres. The observed scales of the penetrative convective plumes compare well with those given by theory. On the mesoscale the structure of homogeneous eddies formed as a result of deep convection was observed and the associated mixing and renewal of the intermediate layers quantified. The relative importance and efficiency of thermal and haline penetrative convection in relation to the surface boundary conditions (heat and salt fluxes and ice cover) and the ambient stratification are studied using the multi year time series of hydro-graphic data in the central Greenland Sea. The modification of the water column of the Greenland Sea gyre through advection from and mixing with water at its rim is assessed on longer time scales. The relative contributions are quantified using modern water mass analysis methods based on inverse techniques. Likewise the convective renewal and the spreading of the Arctic Intermediate Water from its formation area is quantified. The aim is to budget the heat and salt content of the water column, in particular of the low salinity surface layer, and to relate its seasonal and interannual variability to the lateral fluxes and the fluxes at the air-sea-ice interface. This will allow to estimate residence times for the different layers of the Greenland Sea gyre, a quantity important for the description of the Polar Ocean carbon cycle.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: