991 resultados para 11-CH-lake1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

水稻是重要的经济作物,也是单子叶植物分子遗传研究的模式植物。对水稻生长发育中基因的表达调控研究将为其遗传改良提供重要线索。转录因子在植物发育过程中对基因表达调控起关键作用,对其表达谱和功能的研究具有重要的理论和应用价值。 本研究一方面在水稻基因组水平上,利用cDNA芯片技术研究了水稻(中花11)种子发育过程中388个转录相关基因的表达谱;另一方面,在分离转录因子基因的基础上,利用分子生物学和遗传学方法研究了有关基因详细、具体的表达特征和功能。 利用cDNA芯片技术鉴定了123个种子优先表达、属于12类不同表达模式的转录相关基因。首次发现了许多主要在种子发育特定阶段表达的转录相关基因,还发现一些种子优先表达的转录相关基因参与了激素和非生物胁迫信号转导,为阐释水稻种子发育中的转录调节和信号网络的分子基础提供了很多有价值的线索。 在相关基因工作方面,分离了一个MADS-box类转录因子编码基因OsMDP(全长),表达模式析以及初步的功能分析揭示该基因作为一个负调控因子参与了BR控制的水稻叶节弯曲、胚芽鞘伸长、主根伸长等过程的信号转导,为水稻根、叶、胚芽鞘的发育、以及BR信号转导机制的研究提供了线索。 另外,从水稻的cDNA文库中分离并初步研究了三个分属BELL1、KNOX和HD-ZIP亚族的同源盒基因(片段),OsHB1主要和水稻种子发育相联系,OsHB2可能参与激素调节的发育或响应,OsHB3和水稻花药早期发育相关、对花药早期发育的调控研究有一定价值。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

羊草 (Leymus chinensis (Trin.) Tzvel. ) ,隶属禾本科赖草属,是欧亚大陆草原区东部的重要草原建群种之一。羊草是牧草之王,属于我国有比较优势的战略性生物资源,对我国北方畜牧业发展以及保护生态环境均具有重要作用。 羊草较弱的有性生殖特性限制了其应用,本文从实验生物学角度,研究了羊草有性生殖的基本特点,并试图通过现代分子生物学手段探讨自交不亲和性的有关机理。本论文的主要结果如下: 1. 实验发现羊草具有自交不亲和性。以6 个羊草居群为材料,测定得知开放授粉时的结实率在6.5% - 56.7%之间,自交时结实率为0.6% - 4.3%,差异极其显著; FDA 染色法检测结果显示羊草成熟花药中有活性的花粉达到92.2% 以上;在发育时间顺序和空间结构上,羊草雌蕊、雄蕊适于异花和自花授粉;花粉柱头亲和性实验表明,自交花粉只有5.5%-11.7% 是亲和的,杂交花粉亲和率达到了60.0%-84.8%,说明自交花粉在柱头上萌发受到抑制,其次,荧光显微镜还观察到“不亲和花粉”在进入柱头后生长缓慢,或停止延伸。 2. 初步确定羊草自交不亲和性具有配子体型遗传特点。以不同居群羊草杂交后的姊妹系作为实验材料,观察到自交组合的亲和率变幅为0 % - 6.9 %,杂交组合的亲和率具有连续性变异和变幅较宽的特点(47.5% - 96.0 %),且正反交结果具有一定的一致性(88.2%),表现出配子体遗传特性。 3. 羊草居群内结实率存在一定变异。以羊草单株为单位分别进行自交、随机互交和开放授粉,结果显示三者的平均结实率分别为4.6%,18.1% 和35.7%,株间的变异系数分别为33.4%,21.2%和17.1%,这些株间的变异均达到统计上的显著差异;同时羊草自交、杂交和开放授粉之间具有一定的相关性,显示羊草的这种株间差异与株系本身的生理特性相关。 4. 分离了羊草硫氧化还原蛋白 H 基因(ThioLc)并对其功能进行了分析。克隆了ThioLc全长和cDNA序列。序列分析结果显示,DNA全长2257 bp,包括3 个内含子和4 个外显子,与水稻Thio h 的cDNA 序列相比,具有 32.0% 的同源性;Southern 杂交显示 ThioLc 在羊草基因组中是单拷贝;Northern 杂交显示 ThioLc 在羊草根、茎、叶和幼小的雌蕊中没有表达, 在成熟雌蕊和幼小的花粉中微量表达, 在成熟花粉中大量表达,说明分离的羊草硫氧化还原蛋白H 基因具有花粉特异表达特点。 5. 原核表达的ThioLc 蛋白具有较高的催化活性。构建了ThioLc 基因的原核表达载体,检测证明ThioLc基因在大肠杆菌中正常表达;提取表达蛋白,纯化,用胰岛素和二硫苏糖醇反应体系进行硫氧化还原蛋白的催化作用反应,结果表明表达的蛋白具有催化活性。这一结果为进一步搜寻靶向蛋白和研究该蛋白的结构、功能和作用方式奠定了基础。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

                 第一部分 利用减法杂交和RACEs从水稻中克隆了一个编码含有脯氨酸和苏氨酸丰富结构域多肽的cDNA,其相应的基因被命名为RA68。RA68由3个外显子和2个内含子组成,编码的蛋白由219个氨基酸残基组成。该蛋白由一个21个氨基酸残基组成的信号肽,一个亲水性的N-端结构域和一个疏水性的C-端结构域组成。 N端结构域是一段嵌合PTPTSYG motif的富含脯氨酸和苏氨酸的序列。 Southern杂交和序列分析结果表明RA68在水稻基因组中以单拷贝存在,定位于第2号染色体。Northern杂交结果表明RA68在幼芽和花中表达量较高,在根和叶中不表达。原位杂交分析结果表明:在幼苗期RA68 主要在幼芽胚芽鞘的内外层细胞和幼叶原基的表层细胞中表达;转入生殖生长期后,在花序分生组织、枝梗原基顶端、花器官原基、大孢子囊和花粉粒中表达。用GFP作报告基因,用洋葱表皮细胞进行的瞬间表达测试结果显示RA68蛋白定位于细胞核中。转反义RA68水稻植株抽穗期比对照野生型延迟30天左右。这些结果表明RA68可能是水稻花分生组织特征基因,在成花转变过程中起作用。                    第二部分 通过RACE和RT-PCR方法分离了水稻OsUBP1基因,其推测编码蛋白含有UBP结构域(Cys Box和His Box)和TopⅥA结构域。RT-PCR分析结果表明OsUBP1在转录过程中通过可变剪接产生多个不同的转录本,这些转录本在叶、根、颖花和幼芽中存在着时空调节表达模式,每种组织中的转录本是不一样的。这些转录本内含子剪切位点除了经典的GT-AG外,还有GC-AG、CT-AC、TT-GA、GT-GA和CT-GA。由于发生了GC-AG的可变剪切产生了OsUBP1的重要功能结构域Cys Box。水稻OsUBP1基因和OsSPO11-1基因位于11号染色体的同一基因座位上。原位杂交分析表明,在花中OsUBP1 mRNA 主要在药壁绒毡层、花粉粒、大孢子囊和颖花底部维管束中表达。转反义OsUBP1植株大多不能正常结实,这说明OsUBP1可能参与水稻的育性调节。 关键词

Relevância:

20.00% 20.00%

Publicador:

Resumo:

植物络合素(phytochelatins,PCs)是含有γ-Glu-Cys重复结构的小分子多肽,其结构通式为:(γ-Glu-Cys)n-Gly(n=2-11)。植物络合素(PCs)由植物络合素合酶(PCS)催化谷胱甘肽(GSH)聚合而成,能够络合重金属离子而具有解毒功能,这是植物解毒重金属胁迫的重要机制之一。本文克隆了来源于重金属抗性植物绊根草(Cynodon dactylon cv Goldensun)的植物络合素合酶基因,通过基因工程手段使其在烟草中过量表达,得到了一些有望用于植物修复(phytoremediation)的工程植株。同时,在水稻(Oryza sativa)种子中利用RNAi技术抑制植物络合素合酶基因的表达,以降低重金属离子在人类最重要的粮食作物水稻的籽粒中的积累。 1. 通过RACE(Rapid Amplification of cDNA Ends)方法从抗性植物绊根草中克隆了植物络合素合酶基因CdPCS1,其1515 bp的读码框编码一个含505个氨基酸的蛋白质,蛋白质序列分析表明它具有植物络合素合酶的结构特征,同时还具有磷酸化位点和亮氨酸拉链结构。 2. CdPCS1基因可以互补对铜和镉离子敏感的酵母突变株ABDE-1(cup1Δ)中缺失的金属硫蛋白基因CUP1的功能,也可以互补对砷离子敏感的酵母突变体FD236-6A(acr-3Δ)中的离子外排载体基因ARC3的缺失。 3. 将CdPCS1转入烟草,共获得过表达CdPCS1的烟草44个株系,其中融合GFP的株系16个。对T0代的转基因植株的PCs含量以及重金属抗性和吸收能力进行了分析,其中抗性实验表明,在300μmol/L 的Cd2+离子胁迫11天之后,野生型植株的叶片出现斑点状坏死,而两个转基因烟草株系S6和K49的植株没有出现受伤害症状。在100μmol/L的CdSO4处理一周后,转基因植株中的PCs含量比对照有不同程度的提高,最多提高了2.88倍。当用300μmol/L Cd2+处理9天再用600μmol/L Cd2+处理2天后,Cd的积累量比野生型植株增加了2倍多;用50μmol/L As3+处理7天再用100μmol/L As3+处理2天后,转基因植株对As的积累量最多增加了3倍多。说明转入绊根草PC合酶基因的烟草增加了植物络合素的合成,并由此增加了对镉离子的抗性以及对镉离子和砷离子的积累。 4. 对转基因烟草中的CdPCS1进行了亚细胞定位研究。在激光共聚焦显微镜和荧光显微镜下分别用转基因烟草叶片组织和叶肉细胞原生质体观察融合GFP的CdPCS1,结果表明融合蛋白定位于细胞核中。 5. .利用RNAi技术抑制水稻种子中植物络合素合酶基因的表达,共获得39个转基因株系。其中35个株系为种子特异性ZMM1启动子驱动OsPCS1基因的RNAi,其余4个株系由组成型的Ubiquitin启动子驱动。RT-PCR的分析结果表明:一个由ZMM1启动子驱动的RNAi转基因水稻株系的种子中,OsPCS1的mRNA水平比对照中的下降了一半。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

水母雪莲(Saussurea medusa Maxim)为名贵珍稀中药材,其主要药用成分为类黄酮,尤其是3-脱氧类黄酮。目前关于雪莲的研究主要集中在采用细胞培养生产类黄酮等方面,但对于雪莲类黄酮生物合成的分子机制了解甚少,极大限制了这一珍贵资源的利用。本研究采用水母雪莲红色系愈伤组织及悬浮细胞为材料,构建cDNA文库,从中克隆水母雪莲类黄酮次生代谢中的相关基因并对这些基因进行了深入的生物信息学分析、转基因研究初步确定其功能,以期了解雪莲类黄酮次生代谢的分子机制,为提高类黄酮的合成奠定基础。主要结果如下: 1. 成功地构建了水母雪莲红色系愈伤组织与悬浮细胞cDNA文库,原始文库滴度达到4×106pfu/ml,扩增文库滴度接近1011 pfu/ml,重组率达98%。PCR检测插入片段,均在0.5kb到3kb之间,1kb以上占62%。从文库中检测到了chs、dfr及Myb转录因子SmP,文库覆盖度达到要求且为PCR筛选文库提供了可能。 2. 采用部分简并引物,通过RT-PCR克隆了水母雪莲查尔酮异构酶基因Smchi特异探针,并根据这一探针序列设计特异引物,采用TD-PCR法筛选cDNA文库,获得Smchi cDNA序列,全长831bp,编码一个232氨基酸残基的蛋白。根据cDNA序列克隆了Smchi DNA序列,结果表明Smchi基因无内含子。Smchi cDNA序列与翠菊chi基因高度同源,ORF区域同源性高达84%,但推测氨基酸序列则只有79.3%。Smchi mRNA具有复杂的二级结构。SmCHI具有典型的Chalcone结构域,其二级结构与苜蓿CHI蛋白十分相似,7个α-螺旋与8个延伸链由随机结构联系起来。但其活性中心的第三个关键氨基酸残基N115为M115所取代,这一取代可能导致该蛋白无生物活性,也可能使它具有一般CHI不同的功能。构建Smchi正义、反义真核表达载体,通过农杆菌介导导入烟草,获得转正义、反义Smchi基因的烟草。转基因烟草花色未改变,但叶片总黄酮发生了显著的变化,50%转正义基因烟草总黄酮含量显著提高,最高比对照提高6倍,70%转反义基因烟草总黄酮含量显著下降,最多达85.1%,初步证明Smchi具有功能,并能有效调控烟草类黄酮次生代谢。因此,SmCHI可能是不同于已知CHI的一类新的CHI蛋白,它催化的反应可能与花色素合成无关,其反应机制也可能有所不同。 3. 伴随Smchi的克隆获得了一个黄烷酮3-羟化酶类似基因Smf3h的cDNA,全长1334bp,编码一个343aa的蛋白。根据这一cDNA序列克隆了Smf3h DNA序列,全长1630bp,结果表明该基因由4个外显子和3个内含子组成。Smf3h mRNA具有十分复杂的二级结构。 推测蛋白氨基酸同源性分析表明,SmF3H属于2OG-FeII_Oxy家族,与同一家族的的颠茄H6H的同源性为45%,与拟南芥F3H的同源性为40%,但对SmF3H、典型F3H及典型H6H推测蛋白二级结构、活性中心关键氨基酸残基的位置与相对距离、软件进行功能预测分析,发现SmF3H与F3H更相似。构建Smf3h的正义与反义真核表达载体,通过农杆菌介导导入烟草,但只获得一批转正义基因的烟草,反义基因导致烟草不能再生而未获得转反义基因烟草。转基因烟草花色未改变,叶片总黄酮也与对照相似,初步确认Smf3h与烟草类黄酮生物合成无关,而是一个既不属于f3h也不属于h6h的功能未确定的新基因。 4. 采用与克隆Smchi基因相似的方法,从cDNA文库中克隆了SmP基因cDNA,全长969bp,编码一个256 aa的蛋白质。根据cDNA序列克隆了SmP基因的DNA序列,结果表明,SmP基因无内含子。SmP基因cDNA 一级结构及mRNA二级结构预测分析表明,该基因A+T含量很高(63%),所形成二级结构以A-T配对为主,其稳定性可能较差。SmP推测蛋白序列具有R2R3-Myb转录因子的典型特征,在N-端具有两个Myb DNA-binding Domain,其二级结构与鸡Myb转录因子1A5J十分相似,与其他基因如水稻OsMYB、番茄ThMYB的同源区域主要集中在这一结构域,分别为71.3%和70.8%;C-端富含丝氨酸,与烟草NtMYB、葡萄VlMYB等类黄酮调控因子相似,都呈寡聚体分布,并具有相同的保守磷酸化位点S170与S206。构建SmP基因真核表达载体,通过农杆菌介导导入烟草,获得大量转基因烟草。转基因烟草花色未发生改变,但51%的转基因烟草叶片总黄酮含量都显著提高(0.5-6倍),表明SmP具有促进烟草类黄酮生物合成的功能,但所调控的支路与花色素合成无关。初步试验结果表明,转SmP基因烟草对蚜虫具有很高的抗性,可有效地抑制蚜虫在烟草上的生长,抑制率最高可达92%-100%。这一抗性与烟草中类黄酮的积累可能具有直接的联系,但还需要进一步的试验证明。 5. 与美国俄亥俄州立大学Erich Grotewold 博士实验室合作,完成了微型EST库50个克隆的测序并进行了分析,从中获得了水母雪莲花色素合酶基因SmANS及醛脱氢酶基因SmALDH的特异探针。根据SmANS特异探针设计引物,采用PCR从这50个克隆中筛选获得了SmANS的cDNA序列,全长1229bp,编码一个356aa的蛋白质。SmANS在cDNA水平上与同属的翠菊ANS基因高度同源,但同源区域集中在ORF区域,达到80%,mRNA 预测二级结构十分复杂;推测氨基酸序列与翠菊ANS同源性达到82.9%。SmANS属于2OG-FeII_Oxy家族,在2OG-FeII_Oxy结构域高度保守,与翠菊、甜橙ANS保守结构域同源性达到94%。预测蛋白二级结构以α-螺旋-β-折叠为主,由7个主螺旋和11个主β-折叠及随机结构连接而成,并具有2OG-FeII_Oxy家族活性中心的三个保守的组氨酸残基(His84、His235、His291)和一个天冬氨酸残基(Asp237)。 6. 根据微型EST库中获得的SmALDH特异探针设计引物,采用PCR从这50个克隆中筛选获得了SmALDH基因cDNA 序列,全长1664bp,编码一个491aa的蛋白质。SmALDH基因cDNA具有独特的碱基组成,3/-UTR富含A+T,占该区域碱基总量的80%,5/-UTR的A+T和G+C各占50%,比ORF区域(52%)还低,因此其mRNA二级结构中5/-UTR可以单独形成自身二级结构并且十分稳定,这可能影响基因的表达。这一现象在水稻、玉米等植物中也存在。SmALDH在cDNA水平上在ORF区域与拟南芥、藏红花、水稻等具有较高同源性,分别为64.03%、63.89%、63.72%,但在推测蛋白氨基酸序列水平上同源性反而较低,分别为54.9%、54.3%、54.0%。SmALDH缺少线粒体定位信号,为胞质醛脱氢酶,具有一个Aldedh 保守结构域,还具有与1OF7-H相似的以α-螺旋-β-折叠为主的二级结构,由10个主螺旋和15个主β-折叠及随机结构连接而成。由于ALDH在植物细胞乙醇发酵中具有解除醛类物质毒害的功能,因此SmALDH基因的克隆为改造细胞自身以适应发酵培养条件,解决水母雪莲细胞大规模培养中需氧问题提供了可能。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

花粉是高度退化的两细胞或三细胞生物体。作为雄配子体,花粉储藏了父本的全部遗传信息,并通过与柱头识别、萌发和花粉管极性生长将精子送到雌性的胚囊中,完成双受精作用。由于花粉在植物有性生殖过程中的特殊作用和花粉管极性生长的独特细胞学过程,几十年来一直被作为研究这一系列精细细胞学过程的模式,但是其中关键事件的分子机制并不十分清楚。 我们利用蛋白质组学技术鉴定了水稻成熟花粉三个不同组分(花粉外被蛋白、花粉外被/细胞壁相关和可释放蛋白、花粉内在蛋白)中表达的共322种蛋白质。其中,参与信号转导(10%)、细胞壁重塑和代谢(11%)、蛋白质代谢(14%)以及糖类和能量代谢(25%)的蛋白质被高度代表。并且很多是首次被在成熟花粉中得到鉴定的具有重要功能的蛋白质,包括蛋白激酶、受体激酶相互作用蛋白、GDP解聚抑制因子、含有C2结构域蛋白质和亲环蛋白等参与信号转导的蛋白质,eIF4A、线粒体加工肽酶、UFD1和AAA+ATP酶等参与蛋白质合成、装配和降解的蛋白质,以及逆糖基化多肽、似纤维素合酶OsCsLF7等参与细胞壁重塑和代谢的蛋白质等。生物信息学分析表明,在我们鉴定的蛋白质中有11%的蛋白质功能未知并且不含有任何已知的功能结构域。另外,我们利用从头测序技术鉴定了5种新蛋白质。这些首次在花粉中被鉴定的蛋白质、未知功能蛋白质和新蛋白质在花粉萌发过程中的生物学功能值得进一步研究。 进而,我们利用比较蛋白质组学技术获得了水稻花粉体外萌发过程中差异表达的160个鉴定结果(代表120种蛋白质),生物信息学分析表明它们隶属于13个功能类群。其中,参与细胞壁代谢(占24%,如UDP-葡萄糖焦磷酸化酶和第三类过氧化物酶)、蛋白质代谢(占11%,如eIF4A和20S蛋白酶体的亚基)、细胞骨架动力学(占8%,如肌动蛋白、微管蛋白和profilin)和胁迫反应(占7%,如抗坏血酸过氧化物酶)以及糖类和能量代谢(占24%)的蛋白质被高度代表。共有94个鉴定结果(73种蛋白质)在花粉萌发过程中表达丰度上调,包括几乎全部参与蛋白质代谢的蛋白质,多数参与细胞骨架动态变化和离子转运的蛋白质,以及部分参与糖类和能量代谢的蛋白质等。并且有53个鉴定结果(41种蛋白质)可能在萌发过程中被释放到培养基中(柱头上),可能参与了柱头细胞和花粉管通道细胞细胞壁的松弛和水解(如第三类过氧化物酶家族成员、多聚半乳糖醛酸酶、1,4-beta-木聚糖酶和一些花粉过敏源蛋白),或者参与了花粉.柱头的信号识别过程(如钙网蛋白和含有C2结构域的蛋白)。有8种传统认为是参与糖类和能量代谢的酶可能在萌发过程中被释放到培养基中(柱头上),如烯醇酶、磷酸丙糖异构酶和磷酸甘油酸激酶。 同时,我们发现在鉴定的成熟花粉表达的蛋白质中,有23%的蛋白质以多个同工型的形式存在,并且有29种蛋白质的多个同工型的表达丰度在萌发过程中发生变化。它们主要参与了细胞壁代谢、糖类和能量代谢、细胞骨架、胁迫反应和离子运输等代谢过程。我们利用荧光染色技术,检测到其中14种蛋白质可能被磷酸化或者糖基化修饰。这意味着由于翻译后修饰形成的同工型蛋白质在花粉萌发和花粉管生长过程中具有重要作用。 总之,我们以水稻为模式研究其成熟花粉和萌发花粉的蛋白质表达特征,首次报道了单子叶植物成熟花粉不同组分中表达的蛋白质及其功能类群特征,并且首次报道了被子植物花粉萌发过程中表达丰度变化蛋白质的功能类群特征,为进一步揭示花粉萌发和花粉管生长的分子机制提供了重要的蛋白质水平信息。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

低温贮藏是延缓园艺产品采后成熟、抑制病原菌生长和保持品质的常规方法。然而,许多园艺产品对低温(一般低于10 ºC~12 ºC)相当敏感,如果贮藏温度过低,就易产生冷害,降低其商业价值。所以研究采后园艺产品的冷害机制及如何提高其抗冷性是具有潜在经济价值的科学问题。水杨酸甲酯和茉莉酸甲酯是植物产生的信号物质,有研究表明这两种物质能够缓解低温贮藏下果实的冷害程度或提高果实的抗冷性,但是相关的作用机理并不清晰。本论文以芒果、桃和黄瓜为材料,研究水杨酸甲酯或茉莉酸甲酯处理的果实在冷害或非冷害贮藏条件下的抗氧化代谢、酚类物质代谢、细胞膜完整性以及细胞壁成分和结构等方面的变化,进一步证实了水杨酸甲酯和茉莉酸甲酯能够缓解果实的冷害,同时还探讨了提高抗冷性的机制。   本论文采用扫描电子显微镜研究果实表皮蜡层的变化,用光学显微镜、透射电子显微镜和傅里叶变换红外光谱仪研究果实细胞壁结构和成分的变化,用原子吸收分光光度计测定细胞壁钙离子的变化,用电导率仪检测果实细胞的完整性。同时测定了果实酚类物质含量、多酚氧化酶(EC 1.10.3.1)活性、过氧化物酶(EC 1.11.1.7)活性,并分析了果实硬度、糖和酸含量等品质指标。试验结果表明:适宜浓度的水杨酸甲酯和茉莉酸甲酯均能缓解果实的冷害症状,提高果实的抗冷性。其中,水杨酸甲酯处理能够改变果实表皮蜡层结构;降低表皮脂类物质和细胞壁酚类物质积累;抑制细胞壁纤维物质的降解,调节果胶物质的溶解,保护细胞壁结构。茉莉酸甲酯处理可以保护细胞膜的完整性;调节果实的酚类物质代谢,缓解果实的酶促褐变;抑制细胞壁果胶物质和纤维物质的降解,维持细胞壁结构和果实的硬度,有利于提高果实的抗冷性和缓解果实冷害。   虽然不同的果实表现的冷害症状不完全相同,但是低温胁迫对植物组织结构(膜系统和细胞壁结构)的破坏是造成果实冷害的根本原因。提高果实抗冷性的各种调节机制归根结底是通过保护细胞正常结构而发挥作用的。水杨酸甲酯与茉莉酸甲酯处理保护了果实的组织结构,缓解了低温胁迫对果实的伤害,提高了果实的抗冷性。然而,果实自身物质成分的差异是造成冷害症状表现不同的主要原因。   

Relevância:

20.00% 20.00%

Publicador:

Resumo:

青蒿素是从中药青蒿中提取的新型抗疟药物,然而,青蒿素在青蒿中的含量非常低。近年来,随着青蒿素生物合成途径相关酶基因的克隆,基因工程成为提高青蒿素含量的有效途径之一。在对青蒿进行遗传转化过程中,高效稳定的丛生芽诱导体系是青蒿转化成功的关键。然而,随着继代次数的增多,青蒿丛生芽诱导能力存在退化现象。本文首先研究了滤纸对青蒿丛生芽诱导的影响和在遗传转化中的应用,进而研究了反义鲨烯合酶基因表达对青蒿素生物合成的影响。主要结果如下: 研究了在丛生芽诱导培养基上加铺滤纸对青蒿丛生芽诱导的影响,结果发现,加铺滤纸后青蒿丛生芽诱导率显著提高,丛生芽诱导率能够达到97%左右。在此高效丛生芽诱导体系的基础上,我们进一步探讨了滤纸在青蒿遗传转化中的应用。结果表明,在筛选培养基上加铺一层滤纸,青蒿的抗性丛生芽诱导率能够达到59.7%,其中在12.5%的抗性丛生芽中能够得到抗性生根植株,生根植株PCR检测均为阳性,在部分PCR检测阳性的植株中检测到了GUS的稳定表达。 利用上述改进的青蒿遗传转化体系,我们得到了反义鲨烯合酶基因的青蒿转化植株。PCR检测和Southern杂交检测结果证明了反义鲨烯合酶基因已经整合到青蒿基因组中。RT-PCR检测发现,在转基因株系ASQ3和ASQ5中鲨烯合酶基因在mRNA水平上得到部分抑制,鲨烯含量比对照降低了20%左右;青蒿素的含量分别提高了23.2%和21.5%,结果表明抑制鲨烯合酶表达能够有效促进青蒿中青蒿素的生物合成。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

维生素E(V.E.)在动物细胞内具有抗氧化等重要作用,但在植物体内的功能却鲜为人知。本研究以烟草为材料,利用根癌农杆菌(Agrobacterium tumefaciens)介导法在烟草中过量表达拟南芥来源的VTE1。通过外源VTE1基因的过量表达提高内源V.E.的含量, 进而研究转VTE1基因植株对胁迫的耐受性反应,以探讨植物体内V.E.含量与植物胁迫耐受性的关系,为植物抗逆机理的研究和利用奠定基础。 本实验利用CaMV35s启动子与拟南芥来源的生育酚环化酶基因(VTE1)构建的嵌合表达载体,以根癌农杆菌介导的叶盘法转化烟草W38。实验结果表明: 1. 具有卡那霉素抗性的再生植株经PCR检测,得到了与阳性对照一致的495bp的目标片段;经RT-PCR检测,其中90%有外源基因表达。 2. 转基因植株的V.E.含量比对照植株高2倍左右,个别株系高达10.16倍。 3. VTE1基因的表达受环境胁迫的影响,不同程度的冷冻、热激、PEG处理均可影响VTE1基因的表达。经过冷冻处理60分钟、热处理20小时、以及PEG处理6小时,该基因表达量均有提高。冷冻处理条件下该基因的表达量是未处理的3倍,热处理条件下是未处理的2倍左右,PEG处理是未处理的3.5倍。在冷冻、热激、PEG胁迫处理过程中,转化苗的V.E.含量变化与外源VTE1基因的表达相对应,表明转化苗的V.E.合成主要由外源VTE1基因的终产物VTE1催化;在冷冻、热激、PEG胁迫处理过程中,V.E.含量与APX、CAT、SOD等抗氧化酶活性之间存在一定程度的正相关性,表明V.E.与这些抗氧化酶共同组成了植物体内的抗氧化网络,保护植株免受氧化损伤;V.E.的变化与MDA之间存在一定程度的负相关性,减轻植物的过氧化损伤; 4. V.E.可提高植物的抗旱性,我们检测了11个转化烟草株系的叶片相对含水量(RWC),在大多数转化烟草植株中,干旱胁迫24小时的RWC都比野生型高,高出0.16-45%(p<0.001)。表明转基因烟草比野生型更抗旱; 5. 在耐盐性实验中转基因植株对盐的抗性明显高于野生型烟草;同时,在不同盐浓度(150、250mM)胁迫下转基因植株V.E.含量比未转化植株增加了1.3-1.8倍。 这些研究结果表明,在植物体内转入V.E.代谢途径中的单个外源基因,可有效提高内源V.E.合成,提高植株对环境胁迫的抗性。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

对于双子叶模式植物拟南芥在逆境应答中的机理研究已取得了很大的进展,但在单子叶植物中的相关研究相对滞后。在单子叶植物水稻中仅仅报道了一些转录因子类基因以及与代谢有关的酶类基因,但与低温有关的分子伴侣、离子通道和载体等类基因的研究少见报道。 受低温诱导的水稻基因OsCOIN(AK104280)来自水稻10K cDNA芯片,它的cDNA全长有1593bp,开放阅读框内为1089bp,编码363个氨基酸,蛋白质的计算分子量42kDa,等电点5.25。在基因组序列中有7个外显子,6个内含子。生物信息分析显示,OsCOIN在第72—106氨基酸间形成一个指环结构域。OsCOIN蛋白没有跨膜区,定位于细胞质和细胞核。通过酵母双杂交实验证明了指环蛋白OsCOIN没有转录活性,故不是转录因子。RT-PCR结果表明,OsCOIN在所选的11种水稻组织中都有不同程度的表达,4C处理0.5h时OsCOIN基因开始较强地表达,持续较强地表达到4C处理48小时,72h时OsCOIN的表达量下降到起始的水平。另外,该基因表达还受ABA和盐诱导。 利用农杆菌介导的转化手段,得到三个OsCOIN超表达株系和六个RNAi株系。RNAi株系分蘖增多、植株矮化。为了分析OsCOIN与逆境胁迫的关系,实验中分析了超表达植株对低温等胁迫的耐性。结果表明,4C处理60h、72h、84h后,所有植株都出现萎蔫,恢复生长两周后超表达植株的存活率(分别为76.2%、71.4%和50%)明显高于野生型的存活率(分别为52.4%、22.2%和14.8%)。超表达OsCOIN水稻中,OsLti6b、OsNAC6和OsP5CS的表达量明显增加,而OsDhn1和OsDREB1a的表达量明显地降低,OsCDPK7和OsLti6a表达水平未受影响。 上述结果表明OsCOIN基因的过量表达抑制了OsDhn1和OsDREB1a的表达,促进了OsLti6b、OsNAC6和OsP5CS的表达。OsCOIN基因参与的低温响应途径与ABA相关,OsCOIN超表达植株不仅能耐低温,而且对盐和干旱胁迫有一定的抗性。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

从中国传统药用植物青蒿(Artemisia annua L.)中提取的青蒿素及其半合成衍生物如蒿甲醚等是一类新型的抗疟特效药,特别是对抗氯喹的恶性疟疾和脑型疟疾有很好的疗效。由于青蒿素在植物中的含量极低,使得其价格很高,特别是对于亚非拉等第三世界国家来说。因此如何提高青蒿素的产量成为近年来研究的热点。各种传统的育种、生理生化手段和细胞培养技术均未取得较好的结果,因此,利用植物基因工程技术提高青蒿素产量已成为研究的重点之一。 本论文围绕青蒿素的生物合成途径开展了以下的工作: 一、中药青蒿紫穗槐二烯合酶的大肠杆菌表达、纯化与功能鉴定 利用RT-PCR方法,从中药青蒿高产株系001中克隆到的中药青蒿紫穗槐二烯合酶(ADS) cDNA, 其推测编码蛋白与前人报道的有两个位点的突变。将其开放阅读框插入到原核表达载体pET30a(+)的BamHⅠ和XhoⅠ酶切位点之间,构建N端携带有HIS6表达标签的紫穗槐二烯合酶重组表达载体pETADS。将pETADS转入大肠杆菌BL21(DE3), IPTG (Isopropyl-beta -D-thiogalactoside)诱导重组紫穗槐二烯合酶的表达。表达产物经镍琼脂糖柱纯化。纯化蛋白加入酶促反应体系(含FPP),GC-MS分析酶促反应体系的正己烷萃取物,结果显示重组紫穗槐二烯合酶可以催化FPP向紫穗槐二烯的转化。体外酶促动力学分析表明,两个位点的氨基酸突变,并没有影响到青蒿紫穗槐二烯合酶的催化活性。基因组DNA杂交表明,紫穗槐二烯合酶基因在001株系基因组中至少有4个拷贝。 二、中药青蒿鲨烯合酶的大肠杆菌表达、纯化与功能鉴定 将经RACE方法克隆到的中药青蒿鲨烯合酶cDNA(AF302464) 开放阅读框的3'末端截短99 bp,插入到原核表达载体pET30a(+)的NcoⅠ和BamHⅠ酶切位点之间,构建N端和C端均携带有HIS6表达标签的鲨烯合酶重组表达载体pETSSA。将pETSSA转入大肠杆菌BL21(DE3), IPTG (Isopropyl-beta-D-thio galactoside)诱导重组鲨烯合酶的表达。表达产物经镍琼脂糖柱纯化。纯化蛋白加入酶促反应体系(含FPP和NADPH),GC-MS分析酶促反应体系的正己烷萃取物,结果显示重组鲨烯合酶可以催化FPP向鲨烯的转化。青蒿鲨烯合酶的功能鉴定,为进一步利用反义或RNAi技术限制甾类生物合成,从而提高青蒿中的青蒿素含量提供了基础。 三、中药青蒿法呢醇合酶原核表达、纯化与功能鉴定 将经RACE方法克隆到的中药青蒿倍半萜合酶cDNA ( AF304444) 开放阅读框插入到原核表达载体pET30a(+)的NcoⅠ和BamHⅠ酶切位点之间,构建N端和C端均携带有HIS6表达标签的重组表达载体pET30SESQ。将pET30SESQ转入大肠杆菌BL21(DE3), IPTG (Isopropyl-beta-D-thioga lactoside)诱导蛋白表达,表达产物经镍琼脂糖柱纯化。纯化蛋白加入酶促反应体系(FPP),GC-MS分析酶促反应体系的正己烷萃取物,结果显示此重组酶可以催化FPP向法呢醇的转化。 四、中药青蒿FPS、ADS双功能酶基因的构建、表达与功能鉴定 将青蒿素生物合成途径中催化两步连续反应的酶:法呢基焦磷酸合酶和紫穗槐二烯合酶的基因进行融合,经大肠杆菌表达后鉴定融合蛋白的功能,结果表明融合蛋白具有了双功能酶活性。进一步将融合酶基因转入酿酒酵母中,发酵后检测紫穗槐二烯的含量,并与同时转入法呢基焦磷酸合酶和紫穗槐二烯合酶单个基因的酵母、单独转入紫穗槐二烯合酶基因的酵母进行了比较,结果表明,转入双功能酶的酵母发酵获得的紫穗槐二烯含量要比两个对照酵母高,这表明,获得的双功能酶的催化效率要比两个单独酶的催化效率高。 五、过量表达青蒿紫穗槐二烯合酶对青蒿中青蒿素及其前体物含量的影响 利用根癌农杆菌介导,将青蒿紫穗槐二烯合酶转入青蒿株系001,分子检测证明,紫穗槐二烯合酶整合到了青蒿基因组中并在mRNA水平得到了高效表达。部分转基因青蒿的青蒿素含量有明显增加,最多的比001株系提高了41%。青蒿酸和二氢青蒿酸含量测定表明,转基因青蒿株系的青蒿酸和二氢青蒿酸含量最多的比对照分别提高了47%和79%。这些结果表明,紫穗槐二烯合成在青蒿素生物合成途径中是一个限速步骤,同时,也显示青蒿酸或二氢青蒿酸的进一步转化也可能是青蒿素生物合成中下游的限速步骤。