997 resultados para 091399 Mechanical Engineering not elsewhere classified
Resumo:
There is growing interest in the use of context-awareness as a technique for developing pervasive computing applications that are flexible, adaptable, and capable of acting autonomously on behalf of users. However, context-awareness introduces a variety of software engineering challenges. In this paper, we address these challenges by proposing a set of conceptual models designed to support the software engineering process, including context modelling techniques, a preference model for representing context-dependent requirements, and two programming models. We also present a software infrastructure and software engineering process that can be used in conjunction with our models. Finally, we discuss a case study that demonstrates the strengths of our models and software engineering approach with respect to a set of software quality metrics.
Resumo:
Naturally occurring insect viruses are a promising means of intentionally causing disease in insects but they do not compete successfully with synthetic chemicals in the commercial marketplace. Furthermore, their use for pest control is still restricted. One factor preventing the development of baculoviruses as effective biopesticides is concern over the production issue. In vitro instability during propagation of these viruses in suspension cells is the major limitation to the in vitro production ofbaculoviruses in cell cultures. In this study, an isolated baculovirus (HaSNPV) was cultivated using serial passaging in a suspension cell culture. The results show a reduction in the occlusion body production during six passages, due to the passage effect. However the purification of an HaSNPV clone suggested better stability. A simple method used in this work for the serial passaging of this virus is discussed.
Resumo:
Choice of the operational frequency is one of the most responsible parts of any radar design process. Parameters of radars for buried object detection (BOD) are very sensitive to both carrier frequency and ranging signal bandwidth. Such radars have a specific propagation environment with a strong frequency-dependent attenuation and, as a result, short operational range. This fact dictates some features of the radar's parameters: wideband signal-to provide a high range resolution (fractions of a meter) and a low carrier frequency (tens or hundreds megahertz) for deeper penetration. The requirement to have a wideband ranging signal and low carrier frequency are partly in contradiction. As a result, low-frequency (LF) ultrawide-band (UWB) signals are used. The major goal of this paper is to examine the influence of the frequency band choice on the radar performance and develop relevant methodologies for BOD radar design and optimization. In this article, high-efficient continuous wave (CW) signals with most advanced stepped frequency (SF) modulation are considered; however, the main conclusions can be applied to any kind of ranging signals.
Resumo:
Real-time software systems are rarely developed once and left to run. They are subject to changes of requirements as the applications they support expand, and they commonly outlive the platforms they were designed to run on. A successful real-time system is duplicated and adapted to a variety of applications - it becomes a product line. Current methods for real-time software development are commonly based on low-level programming languages and involve considerable duplication of effort when a similar system is to be developed or the hardware platform changes. To provide more dependable, flexible and maintainable real-time systems at a lower cost what is needed is a platform-independent approach to real-time systems development. The development process is composed of two phases: a platform-independent phase, that defines the desired system behaviour and develops a platform-independent design and implementation, and a platform-dependent phase that maps the implementation onto the target platform. The last phase should be highly automated. For critical systems, assessing dependability is crucial. The partitioning into platform dependent and independent phases has to support verification of system properties through both phases.
Resumo:
One of the challenges for software engineering is collecting meaningful data from industrial projects. Software process improvement depends on measurement to provide baseline status and confirming evidence of the effect of process changes. Without data, any conclusions rely on intuition and guessing. The Team Software ProcessSM (TSPSM) provides a powerful framework for data collection and analysis, in addition to its primary goal as a basis for highly effective software development. In this paper, we describe the experiences of, and benefits realized by, a team using the TSP for the first time. By reviewing how this particular team collected and used data, we show features of the TSP that make it a powerful foundation for software process improvement.
Resumo:
This paper presents a formal framework for modelling and analysing mobile systems. The framework comprises a collection of models of the dominant design paradigms which are readily extended to incorporate details of particular technologies, i.e., programming languages and their run-time support, and applications. The modelling language is Object-Z, an extension of the well-known Z specification language with explicit support for object-oriented concepts. Its support for object orientation makes Object-Z particularly suited to our task. The system structuring techniques offered by object-orientation are well suited to modelling mobile systems. In addition, inheritance and polymorphism allow us to exploit commonalities in mobile systems by defining more complex models in terms of simpler ones.
Resumo:
Since Z, being a state-based language, describes a system in terms of its state and potential state changes, it is natural to want to describe properties of a specified system also in terms of its state. One means of doing this is to use Linear Temporal Logic (LTL) in which properties about the state of a system over time can be captured. This, however, raises the question of whether these properties are preserved under refinement. Refinement is observation preserving and the state of a specified system is regarded as internal and, hence, non-observable. In this paper, we investigate this issue by addressing the following questions. Given that a Z specification A is refined by a Z specification C, and that P is a temporal logic property which holds for A, what temporal logic property Q can we deduce holds for C? Furthermore, under what circumstances does the property Q preserve the intended meaning of the property P? The paper answers these questions for LTL, but the approach could also be applied to other temporal logics over states such as CTL and the mgr-calculus.
Resumo:
We discuss how integrity consistency constraints between different UML models can be precisely defined at a language level. In doing so, we introduce a formal object-oriented metamodeling approach. In the approach, integrity consistency constraints between UML models are defined in terms of invariants of the UML model elements used to define the models at the language-level. Adopting a formal approach, constraints are formally defined using Object-Z. We demonstrate how integrity consistency constraints for UML models can be precisely defined at the language-level and once completed, the formal description of the consistency constraints will be a precise reference of checking consistency of UML models as well as for tool development.