985 resultados para 020502 Lasers and Quantum Electronics
Resumo:
The microwave photonic responses based on the superstructure fibre Bragg gratings with designed apodisation profile are investigated. The rejection level of more than 60 dB for a bandpass filtering response is demonstrated.
Resumo:
A novel dual complementary output optical fiber transversal filter is realized for DWDM applications. Stable, simultaneous complementary filter responses with flattened passbands and large sidelobe suppressions are achieved with a single-line cascaded Hi-Bi fiber structure.
Resumo:
Differential group delay measurement of narrowband fiber devices using a fiber polarization scrambler with a modulation phase shift technique is demonstrated. Accurate measurement is realized with high wavelength and delay resolution and immunity to environmental perturbation.
Resumo:
We present a technique for suppressing cladding-mode coupling loss in fiber Bragg grating fabrication. Suppression of cladding-modes down to 0.2 dB in a Bragg grating of 18dB reflectivity has been achieved in hydrogen-loaded standard single-mode fiber.
Resumo:
We develop a theory of an optimal distribution of the gain of in-line amplifiers in dispersion-managed transmission systems. As an example of the application of the general method we propose a design of the line with periodically imbalanced in-line amplification.
Resumo:
A simple and efficient approach to the optimal design of 3-wavelength backward-pumped Raman amplifiers is proposed. Gain flatness of 1.7 dB is demonstrated in a spectral range of 1520-1595 nm using only three pumps with wavelengths within the 1420-1480 nm interval.
Resumo:
We propose a simple Er-doped fiber laser configuration for achieving stable dual-wavelength oscillation at room temperature, in which a high birefringence fiber Bragg grating was used as the wavelength-selective component. Stable dual-wavelength oscillation at room temperature with a wavelength spacing of 0.23nm and mutually orthogonal polarisation states was achieved by utilising the polarisation hole burning effect. An amplitude variation of less than 0.7dB over 80s period was obtained for both wavelengths.
Resumo:
In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.
Resumo:
The controlled synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) using RAFT polymerisation has been studied. Selected experimental conditions led to the production of PNSS with variable molecular weights and low dispersities (D{stroke}≤1.50). The controlled synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) using reversible addition-fragmentation chain transfer polymerisation has been studied under a wide range of experimental conditions. PNSS can be used as an organic-soluble, thermally labile precursor for industrially valuable poly(p-styrene sulfonate), widely employed in technologies such as ionic exchange membranes and organic electronics. The suitability of two different chain transfer agents, three solvents, three different monomer concentrations and two different temperatures for the polymerisation of neopentyl p-styrene sulfonate is discussed in terms of the kinetics of the process and characteristics of the final polymer. Production of PNSS with systematically variable molecular weights and low dispersities (D{stroke} ≤1.50 in all cases) has been achieved using 2-azidoethyl 2-(dodecylthiocarbonothioylthio)-2-methylpropionate in anisole at 75°C, with an initial monomer concentration of 4.0molL-1. Finally, a poly(neopentyl p-styrene sulfonate)-b-polybutadiene-b-poly(neopentyl p-styrene sulfonate) (PNSS-b-PBD-b-PNSS) triblock copolymer has been synthesised via azide-alkyne click chemistry. Moreover, subsequent thermolysis of the PNSS moieties generated poly(p-styrene sulfonate) end blocks. This strategy allows the fabrication of amphiphilic copolymer films from single organic solvents without the need for post-deposition chemical treatment.
Resumo:
Point-by-point inscription of sub-µm period fiber Bragg gratings with good spectral quality, first order Bragg resonances within the C-band is achieved. Distinct polarization characteristics are further observed in these fiber gratings.
Resumo:
With the rebirth of coherent detection, various algorithms have come forth to alleviate phase noise, one of the main impairments for coherent receivers. These algorithms provide stable compensation, however they limit the DSP. With this key issue in mind, Fabry Perot filter based self coherent optical OFDM was analyzed which does not require phase noise compensation reducing the complexity in DSP at low OSNR. However, the performance of such a receiver is limited due to ASE noise at the carrier wavelength, especially since an optical amplifier is typically employed with the filter to ensure sufficient carrier power. Subsequently, the use of an injection-locked laser (ILL) to retrieve the frequency and phase information from the extracted carrier without the use of an amplifier was recently proposed. In ILL based system, an optical carrier is sent along with the OFDM signal in the transmitter. At the receiver, the carrier is extracted from the OFDM signal using a Fabry-Perot tunable filter and an ILL is used to significantly amplify the carrier and reduce intensity and phase noise. In contrast to CO-OFDM, such a system supports low-cost broad linewidth lasers and benefits with lower complexity in the DSP as no carrier frequency estimation and correction along with phase noise compensation is required.