973 resultados para wasp venom toxins
Resumo:
Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. • Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.
Resumo:
The parasitoid Chelonus inanitus (Braconidae, Hymenoptera) oviposits into eggs of Spodoptera littoralis (Noctuidae, Lepidoptera) and, along with the egg, also injects polydnaviruses and venom, which are prerequisites for successful parasitoid development. The parasitoid larva develops within the embryonic and larval stages of the host, which enters metamorphosis precociously and arrests development in the prepupal stage. Polydnaviruses are responsible for the developmental arrest and interfere with the host's endocrine system in the last larval instar. Polydnaviruses have a segmented genome and are transmitted as a provirus integrated in the wasp's genome. Virions are only formed in female wasps and no virus replication is seen in the parasitized host. Here it is shown that very small amounts of viral transcripts were found in parasitized eggs and early larval instars of S. littoralis. Later on, transcript quantities increased and were highest in the late last larval instar for two of the three viral segments tested and in the penultimate to early last larval instar for the third segment. These are the first data on the occurrence of viral transcripts in the host of an egg-larval parasitoid and they are different from data reported for hosts of larval parasitoids, where transcript levels are already high shortly after parasitization. The analysis of three open reading frames by RT-PCR revealed viral transcripts in parasitized S. littoralis and in female pupae of C. inanitus, indicating the absence of host specificity. For one open reading frame, transcripts were also seen in male pupae, suggesting transcription from integrated viral DNA.
Resumo:
Many endoparasitic wasps inject, along with the egg, polydnavirus into their insect hosts, the virus being a prerequisite for successful parasitoid development. The genome of polydnaviruses consists of multiple circular dsDNA molecules of variable size. We show for a 12 kbp segment of the braconid Chelonus inanitus (CiV12) that it is integrated into the wasp genome. This is the first direct demonstration of integration for a bracovirus. PCR data indicated that the integrated form of CiV12 was present in all male and female stages investigated while the excised circular virus DNA only appeared in females after a specific stage in pupal-adult development. The data also indicated that after excision of virus DNA the genomic DNA was rejoined. This has not yet been reported for any polydnavirus. Sequence analyses in the junction regions revealed the presence of an imperfect consensus sequence of 15 nucleotides in CiV12, in each terminus of the integrated virus DNA and in the rejoined genomic DNA. Within these repeats two sequence types (ATA, TAC) were observed in the various virus clones and in the clones encompassing the rejoined genomic DNA; they corresponded to the sequence type in the right and left junction, respectively. To explain this, we propose a model of virus DNA replication in which the genomic DNA is folded to juxtapose the direct repeat of the left with that of the right junction; recombination at specific sites would then yield the two types of virus and rejoined genomic DNA.
Resumo:
Ultrastructural analysis of the polydnavirus of the braconid wasp Chelonus inanitus revealed that virions consist of one cylindrical nucleocapsid enveloped by a single unit membrane. Nucleocapsids have a constant diameter of 33.7 +/- 1.4 nm and a variable length of between 8 and 46 nm. Spreading of viral DNA showed that the genome consists of circular dsDNA molecules of variable sizes and measurement of the contour lengths indicated sizes of between 7 and 31 kbp. When virions were exposed to osmotic shock conditions to release the DNA, only one circular molecule was released per particle suggesting that the various DNA molecules are singly encapsidated in this bracovirus. The viral genome was seen to consist of at least 10 different segments and the aggregate genome size is in the order of 200 kbp. By partial digestion of viral DNA with HindIII or EcoRI in the presence of ethidium bromide and subsequent ligation with HindIII-cut pSP65 or EcoRI-cut pSP64 and transfection into Escherichia coli, libraries of 103 HindIII and 23 EcoRI clones were obtained. Southern blots revealed that complete and unrearranged segments were cloned with this approach, and restriction maps for five segments were obtained. Part of a 16.8 kbp segment was sequenced, found to be AT-rich (73%) and to contain six copies of a 17 bp repeated sequence. The development of the female reproductive tract in the course of pupal-adult development of the wasp was investigated and seen to be strictly correlated with the pigmentation pattern. By the use of a semiquantitative PCR, replication of viral DNA was observed to initiate at a specific stage of pupal-adult development.
Resumo:
STRUCTURE OF CUPIENNIUS SALEI VENOM HYALURONIDASE Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40-60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. FUNCTION OF VENOM HYALURONIDASES Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well the current phylogenetic idea on a more isolated position of these families and can perhaps be explained by specialized prey catching techniques.
Resumo:
The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca(2+) and an efflux of cytoplasmic constituents. In order to ensure survival, the cell needs to identify, plug and remove lesions from its membrane. Quarantined by membrane folds and isolated by membrane fusion, the pores are removed from the plasmalemma and expelled into the extracellular space. Outward vesiculation and microparticle shedding seem to be the strategies of choice to eliminate toxin-perforated membrane regions from the plasmalemma of host cells. Depending on the cell type and the nature of injury, the membrane lesion can also be taken up by endocytosis and degraded internally. Host cells make excellent use of an initial, moderate rise in intracellular [Ca(2+)], which triggers containment of the toxin-inflicted damage and resealing of the damaged plasmalemma. Additional Ca(2+)-dependent defensive cellular actions range from the release of effector molecules in order to warn neighbouring cells, to the activation of caspases for the initiation of apoptosis in order to eliminate heavily damaged, dysregulated cells. Injury to the plasmalemma by bacterial toxins can be prevented by the early sequestration of bacterial toxins. Artificial liposomes can act as a decoy system preferentially binding and neutralizing bacterial toxins.
Resumo:
Clostridium difficile is the most important and common cause of hospital-acquired diarrhea. Toxin A and B are two important protein toxins responsible for C. difficile disease. This systematic review was undertaken to summarize the association between severity of C. difficile disease and different types of toxins. Only 5 studies were found that met the inclusion criteria. Only two studies reported results that were statistically significant and that the C. difficile disease was more severe in patient with binary toxin genes. Other three studies did not report significant findings but the authors stated that these studies were too small to detect true association. The main difference between the studies which detect association and those which did not detect association was the sample size. Well-designed and large scale studies are needed to strengthen the relationship between severe disease and toxin types. ^
Resumo:
Este proyecto se basa en la comparación de un modelo de flujo lineal frente a un modelo de ecuaciones completas. Con esta motivación se empleará un programa de cada tipo. Los elegidos son el WAsP y el WindSim respectivamente. Tras una breve descripción de cada programa, estudiaremos los distintos elementos que los componen y su estructura. Entre todas las posibilidades que presentan ambos programas, el proyecto se centrará en la estimación del recurso eólico. En teoría, el programa que emplea un modelo lineal no será apto en terrenos complejos, por ello se tratará de estimar el error cometido por el modelo lineal tomando como referencia el modelo de ecuaciones completas. Con el objetivo de comparar ambos programas y poder distinguir sus diferencias, se plantea un caso común, en el cual se evaluarán distintas condiciones meteorológicas para colinas de forma gaussiana y distinta pendiente. Con ello se pretende medir la evolución de la precisión del WAsP conforme el terreno se va haciendo más complejo. Otras variables a tener en cuenta serán la variación de la velocidad del viento y la altura del punto de cálculo. Finalmente se analizan y explican los resultados obtenidos acompañados de elementos visuales proporcionados por los programas. 2. Abstract The main objective of this project is the comparison of two models, one based on the lineal flux and the other based on the complete equations. Thanks to two different computer programmes, WAsP and WindSim, the first one using a linear model and the second one using a complete equation model, we will be able to highlight the main differences between both models. Furthermore, a description of the structure and elements of each program will be outlined. This project will focus on the estimation of the wind resource. In theory, the program which uses a linear model will not be useful in complex terrains. Therefore, we will try to estimate the fault of the lineal model comparing it to the complete equation model. In order to be able to distinguish the differences between both programmes, the same exercise will be proposed to be solved by both of them. Here a range of meteorological conditions will be evaluated over a Gaussian hill with a slope that varies. Thereby, we will be able to measure the evolution of the precision of WAsP according to the increase of the slope. Finally, the results are analysed and explained with help of some visual characters.
Resumo:
The Arp2/3 complex, a stable assembly of two actin-related proteins (Arp2 and Arp3) with five other subunits, caps the pointed end of actin filaments and nucleates actin polymerization with low efficiency. WASp and Scar are two similar proteins that bind the p21 subunit of the Arp2/3 complex, but their effect on the nucleation activity of the complex was not known. We report that full-length, recombinant human Scar protein, as well as N-terminally truncated Scar proteins, enhance nucleation by the Arp2/3 complex. By themselves, these proteins either have no effect or inhibit actin polymerization. The actin monomer-binding W domain and the p21-binding A domain from the C terminus of Scar are both required to activate Arp2/3 complex. A proline-rich domain in the middle of Scar enhances the activity of the W and A domains. Preincubating Scar and Arp2/3 complex with actin filaments overcomes the initial lag in polymerization, suggesting that efficient nucleation by the Arp2/3 complex requires assembly on the side of a preexisting filament—a dendritic nucleation mechanism. The Arp2/3 complex with full-length Scar, Scar containing P, W, and A domains, or Scar containing W and A domains overcomes inhibition of nucleation by the actin monomer-binding protein profilin, giving active nucleation over a low background of spontaneous nucleation. These results show that Scar and, likely, related proteins, such as the Cdc42 targets WASp and N-WASp, are endogenous activators of actin polymerization by the Arp2/3 complex.
Resumo:
The dose-limiting toxicity of interleukin-2 (IL-2) and immunotoxin (IT) therapy in humans is vascular leak syndrome (VLS). VLS has a complex etiology involving damage to vascular endothelial cells (ECs), extravasation of fluids and proteins, interstitial edema, and organ failure. IL-2 and ITs prepared with the catalytic A chain of the plant toxin, ricin (RTA), and other toxins, damage human ECs in vitro and in vivo. Damage to ECs may initiate VLS; if this damage could be avoided without losing the efficacy of ITs or IL-2, larger doses could be administered. In this paper, we provide evidence that a three amino acid sequence motif, (x)D(y), in toxins and IL-2 damages ECs. Thus, when peptides from RTA or IL-2 containing this sequence motif are coupled to mouse IgG, they bind to and damage ECs both in vitro and, in the case of RTA, in vivo. In contrast, the same peptides with a deleted or mutated sequence do not. Furthermore, the peptide from RTA attached to mouse IgG can block the binding of intact RTA to ECs in vitro and vice versa. In addition, RTA, a fragment of Pseudomonas exotoxin A (PE38-lys), and fibronectin also block the binding of the mouse IgG-RTA peptide to ECs, suggesting that an (x)D(y) motif is exposed on all three molecules. Our results suggest that deletions or mutations in this sequence or the use of nondamaging blocking peptides may increase the therapeutic index of both IL-2, as well as ITs prepared with a variety of plant or bacterial toxins.
Resumo:
Escherichia coli O157:H7 causes Shiga toxin (Stx)-mediated vascular damage, resulting in hemorrhagic colitis and the hemolytic uremic syndrome in humans. These infections are often foodborne, and healthy carrier cattle are a major reservoir of E. coli O157:H7. We were interested in knowing why cattle are tolerant to infection with E. coli O157:H7. Cattle tissues were examined for the Stx receptor globotriaosylceramide (Gb3), for receptivity to Stx binding in vitro, and for susceptibility to the enterotoxic effects of Stx in vivo. TLC was used to detect Gb3 in tissues from a newborn calf. Gb3 was detected by TLC in kidney and brain, but not in the gastrointestinal tract. Immunohistochemistry was used to define binding of Stx1 and Stx2 overlaid onto sections from cattle tissues. Stx1 and Stx2 bound to selected tubules in the cortex of the kidney of both newborn calves (n = 3) and adult cattle (n = 3). Stx did not bind to blood vessels in any of the six gastrointestinal and five extraintestinal organs examined. The lack of Gb3 and of Stx receptivity in the gastrointestinal tract raised questions about the toxicity of Stx in bovine intestine. We found that neither viable E. coli O157:H7 nor Stx-containing bacterial extracts were enterotoxic (caused fluid accumulation) in ligated ileal loops in newborn calves. The lack of vascular receptors for Stx provides insight into why cattle are tolerant reservoir hosts for E. coli O157:H7.