967 resultados para volcanic aerosols


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions between Late Quaternary volcanic and sedimentary processes in the Naples Bay, Southern Tyrrhenian sea, are here discussed through the results of the marine geological survey at the scale 1:25.000. The example of the geological map n. 465 “Isola di Procida”, herein presented, has put in evidence the stratigraphy of marine Quaternary deposits and related volcanic seismic units. The volcanic deposits cropping out in the Procida island have been explained as the result of eruptions of local eruptive centres. The geological survey carried out onshore indicates the occurrence of several pyroclastic units linked to the eruptive activity of the Ischian and Phlegrean volcanic complexes, interstratified with the products erupted by local volcanic centres. The occurrence in the pyroclastic sequences of Ischia and Procida islands of several marker horizons and their stratigraphic correlations have allowed to reconstruct the volcanological evolution of the two islands and the interactions with sedimentary processes at the scale of the whole Tyrrhenian margin. Four geological maps at the scale 1:25.000 covering the whole Naples Bay have been reconstructed based on the interpretation of marine geological and geophysical data. The stratigraphic relationships between the seismic units and the eruptive deposits have testified the activity of several monogenetic volcanic centers, whose products are interstratified with marine and continental deposits of the Late Quaternary depositional sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stratigraphic architecture of deep sea depositional systems has been discussed in detail. Some examples in Ischia and Stromboli volcanic islands (Southern Tyrrhenian sea, Italy) are here shown and discussed. The submarine slope and base of slope depositional systems represent a major component of marine and lacustrine basin fills, constituting primary targets for hydrocarbon exploration and development. The slope systems are characterized by seven seismic facies building blocks, including the turbiditic channel fills, the turbidite lobes, the sheet turbidites, the slide, slump and debris flow sheets, lobes and tongues, the fine-grained turbidite fills and sheets, the contourite drifts and finally, the hemipelagic drapes and fills. Sparker profiles offshore Ischia are presented. New seismo-stratigraphic evidence on buried volcanic structures and overlying Quaternary deposits of the eastern offshore of the Ischia Island are here discussed to highlight the implications on marine geophysics and volcanology. Regional seismic sections in the Ischia offshore across buried volcanic structures and debris avalanche and debris flow deposits are here presented and discussed. Deep sea depositional systems in the Ischia Island are well developed in correspondence to the Southern Ischia canyon system. The canyon system engraves a narrow continental shelf from Punta Imperatore to Punta San Pancrazio, being limited southwestwards from the relict volcanic edifice of the Ischia bank. While the eastern boundary of the canyon system is controlled by extensional tectonics, being limited from a NE-SW trending (counter-Apenninic) normal fault, its western boundary is controlled by volcanism, due to the growth of the Ischia volcanic bank. Submarine gravitational instabilities also acted in relationships to the canyon system, allowing for the individuation of large scale creeping at the sea bottom and hummocky deposits already interpreted as debris avalanche deposits. High resolution seismic data (Subbottom Chirp) coupled to high resolution Multibeam bathymetry collected in the frame of the Stromboli geophysical experiment aimed at recording seismic active data and tomography of the Stromboli Island are here presented. A new detailed swath bathymetry of Stromboli Island is here shown and discussed to reconstruct an up-to-date morpho-bathymetry and marine geology of the area, compared to volcanologic setting of the Aeolian volcanic complex. The Stromboli DEM gives information about the submerged structure of the volcano, particularly about the volcano-tectonic and gravitational processes involving the submarine flanks of the edifice. Several seismic units have been identified around the volcanic edifice and interpreted as volcanic acoustic basement pertaining to the volcano and overlying slide chaotic bodies emplaced during its complex volcano-tectonic evolution. They are related to the eruptive activity of Stromboli, mainly poliphasic and to regional geological processes involving the geology of the Aeolian Arc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the formative agents of cloud droplets, aerosols play an undeniably important role in the development of clouds and precipitation. Few meteorological models have been developed or adapted to simulate aerosols and their contribution to cloud and precipitation processes. The Weather Research and Forecasting model (WRF) has recently been coupled with an atmospheric chemistry suite and is jointly referred to as WRF-Chem, allowing atmospheric chemistry and meteorology to influence each other’s evolution within a mesoscale modeling framework. Provided that the model physics are robust, this framework allows the feedbacks between aerosol chemistry, cloud physics, and dynamics to be investigated. This study focuses on the effects of aerosols on meteorology, specifically, the interaction of aerosol chemical species with microphysical processes represented within the framework of the WRF-Chem. Aerosols are represented by eight size bins using the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional parameterization, which is linked to the Purdue Lin bulk microphysics scheme. The aim of this study is to examine the sensitivity of deep convective precipitation modeled by the 2D WRF-Chem to varying aerosol number concentration and aerosol type. A systematic study has been performed regarding the effects of aerosols on parameters such as total precipitation, updraft/downdraft speed, distribution of hydrometeor species, and organizational features, within idealized maritime and continental thermodynamic environments. Initial results were obtained using WRFv3.0.1, and a second series of tests were run using WRFv3.2 after several changes to the activation, autoconversion, and Lin et al. microphysics schemes added by the WRF community, as well as the implementation of prescribed vertical levels by the author. The results of WRFv3.2 runs contrasted starkly with WRFv3.0.1 runs. The WRFv3.0.1 runs produced a propagating system resembling a developing squall line, whereas the WRFv3.2 runs did not. The response of total precipitation, updraft/downdraft speeds, and system organization to increasing aerosol concentrations were opposite between runs with different versions of WRF. Results of the WRFv3.2 runs, however, were in better agreement in timing and magnitude of vertical velocity and hydrometeor content with a WRFv3.0.1 run using single-moment Lin et al. microphysics, than WRFv3.0.1 runs with chemistry. One result consistent throughout all simulations was an inhibition in warm-rain processes due to enhanced aerosol concentrations, which resulted in a delay of precipitation onset that ranged from 2-3 minutes in WRFv3.2 runs, and up to 15 minutes in WRFv.3.0.1 runs. This result was not observed in a previous study by Ntelekos et al. (2009) using the WRF-Chem, perhaps due to their use of coarser horizontal and vertical resolution within their experiment. The changes to microphysical processes such as activation and autoconversion from WRFv3.0.1 to WRFv3.2, along with changes in the packing of vertical levels, had more impact than the varying aerosol concentrations even though the range of aerosol tested was greater than that observed in field studies. In order to take full advantage of the input of aerosols now offered by the chemistry module in WRF, the author recommends that a fully double-moment microphysics scheme be linked, rather than the limited double-moment Lin et al. scheme that currently exists. With this modification, the WRF-Chem will be a powerful tool for studying aerosol-cloud interactions and allow comparison of results with other studies using more modern and complex microphysical parameterizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

VESPA was a successful 25 day research cruise on R/V l'Atalante that took place in May and June 2015. The main aim was to acquire new rock samples from extinct volcanoes on the Norfolk, Loyalty and Three Kings ridges, which connect New Caledonia and New Zealand. This was in order to test various hypotheses of Late Cretaceous-Miocene SW Pacific tectonic development relating to (i) nature and duration of magmatism on the ridges; (ii) timing of subduction initiation east of northern Zealandia; (iii) postulated subduction polarity changes. A total of 3400 km of 'sismique rapide' shallow reflection seismic data were acquired and processed onboard. The seismic lines provided a very useful structural-stratigraphic framework for the rock dredging. Combined with multibeam bathymetry data they allowed intelligent targeting of acoustic basement (lavas) and specific seismic reflectors (sedimentary strata) on rocky slopes and fault scarps. Different stratigraphic levels of the Loyalty and Three Kings Ridge volcanic piles were sampled by dredging at different water depths on the Cook Fracture Zone and Cagou Trough fault scarps. By the end of the cruise, 43 dredges had been attempted and 36 of them yielded igneous or sedimentary rocks potentially useful to the VESPA project. Onboard use of a portable X-ray fluorescence unit confirmed the presence of intraplate (but no arc) volcanoes on the Norfolk Ridge and presence of arc, intraplate and shoshonitic volcanoes on the Loyalty and Three Kings Ridges. A total of 770 kg of rock was retained for post-cruise analysis in New Caledonia, France and New Zealand. Future work will include micropaleontological dating of sedimentary rocks, U-Pb and Ar-Ar isotopic dating of igneous rocks, and whole rock geochemical and tracer isotope analyses. We are optimistic that many of the initial research hypotheses will be able to be tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light absorption by aerosols has a great impact on climate change. A Photoacoustic spectrometer (PA) coupled with aerosol-based classification techniques represents an in situ method that can quantify the light absorption by aerosols in a real time, yet significant differences have been reported using this method versus filter based methods or the so-called difference method based upon light extinction and light scattering measurements. This dissertation focuses on developing calibration techniques for instruments used in measuring the light absorption cross section, including both particle diameter measurements by the differential mobility analyzer (DMA) and light absorption measurements by PA. Appropriate reference materials were explored for the calibration/validation of both measurements. The light absorption of carbonaceous aerosols was also investigated to provide fundamental understanding to the absorption mechanism. The first topic of interest in this dissertation is the development of calibration nanoparticles. In this study, bionanoparticles were confirmed to be a promising reference material for particle diameter as well as ion-mobility. Experimentally, bionanoparticles demonstrated outstanding homogeneity in mobility compared to currently used calibration particles. A numerical method was developed to calculate the true distribution and to explain the broadening of measured distribution. The high stability of bionanoparticles was also confirmed. For PA measurement, three aerosol with spherical or near spherical shapes were investigated as possible candidates for a reference standard: C60, copper and silver. Comparisons were made between experimental photoacoustic absorption data with Mie theory calculations. This resulted in the identification of C60 particles with a mobility diameter of 150 nm to 400 nm as an absorbing standard at wavelengths of 405 nm and 660 nm. Copper particles with a mobility diameter of 80 nm to 300 nm are also shown to be a promising reference candidate at wavelength of 405 nm. The second topic of this dissertation focuses on the investigation of light absorption by carbonaceous particles using PA. Optical absorption spectra of size and mass selected laboratory generated aerosols consisting of black carbon (BC), BC with non-absorbing coating (ammonium sulfate and sodium chloride) and BC with a weakly absorbing coating (brown carbon derived from humic acid) were measured across the visible to near-IR (500 nm to 840 nm). The manner in which BC mixed with each coating material was investigated. The absorption enhancement of BC was determined to be wavelength dependent. Optical absorption spectra were also taken for size and mass selected smoldering smoke produced from six types of commonly seen wood in a laboratory scale apparatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El Estribo Volcanic Complex (EVC) is located in the northern part of the Michoacán–Guanajuato Volcanic Field within the Trans-Mexican Volcanic Belt (TMVB). El Estribo is located at the southern edge of the E-W Pátzcuaro fault that belongs to the Pátzcuaro-Jarácuaro graben, a western extension of the E-W Morelia–Acambay fault system. Stratigraphy, geochronology, chemistry, and mineral assemblages suggest that the volcanic complex was constructed in two periods separated by a ~ 100 ka volcanic hiatus: a) emission of lava flows that constructed a shield volcano between 126 ka, and b) mixed phreatomagmatic to Strombolian activity that formed a cinder cone ~ 28 ka. The magmas that fed these monogenetic volcanoes were able to use the same feeding system. The cinder cone itself was constructed by Strombolian fallouts and remobilized scoria beds, followed by an erosion period, and by a mixed phreatomagmatic to magmatic phase (Strombolian fallouts ending with lava flows). Soft-sedimentary deformation of beds and impact sags, cross-bedding, as well as pitting and hydrothermal cracks found in particles support the phreatomagmatic phase. The erupted magmas through time ejected basaltic andesitic lava flows (56.21–58.88% SiO2) that built the shield volcano and then basaltic andesitic scoria (57.65–59.05% SiO2) that constructed the cinder cone. Although they used the same feeding system, the geochemical data and the mineral chemistry of the magmas indicate that the shield volcano and the cinder cone were fed by different magma batches erupted thousands of years apart. Therefore, the location of El Estribo Volcanic Complex along an E-W fault that has generated two sector collapses of the shield volcano to the north may be directly linked to this complex redistribution of the magmatic paths to the surface. Our findings show that magmatic feeding systems within monogenetic volcanic fields could be long lived, questioning the classic view of the monogenetic nature of their volcanoes and yielding information about the potential volcanic risk of these settings, usually considered risk-free.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate science and climate change are included in the Next Generation Science Standards, curriculum standards that were released in 2013. How to incorporate these topics, especially climate change, has been a difficult task for teachers. A team of scientists are studying aerosols in the free troposphere; what their properties are, how they change while in the atmosphere and where they came from. Lessons were created based on this real, ongoing scientific research being conducted in the Azores. During these activities, students are exposed to what scientists actually do in the form of videos and participate in similar tasks such as conducting experiments, collecting data, and analyzing data. At the conclusion of the lessons, students will form conclusions based on the evidence they have at the time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of Fuego volcano during the 1999 - 2013 eruptive episode is studied through field, remote sensing and observatory records. Mapping of the deposits allows quantifying the erupted volumes and areas affected by the largest eruptions during this period. A wide range of volcanic processes results in a diversity of products and associated deposits, including minor airfall tephra, rockfall avalanches, lava flows, and pyroclastic flows. The activity can be characterized by long term, low level background activity, and sporadic larger explosive eruptions. Although the background activity erupts lava and ash at a low rate (~ 0.1 m3/s), the persistence of such activity over time results in a significant contribution (~ 30%) to the eruption budget during the studied period. Larger eruptions produced the majority of the volume of products during the studied period, mainly during three large events (May 21, 1999, June 29, 2003, and September 13, 2012), mostly in the form of pyroclastic flows. A total volume of ~ 1.4 x 108 m3 was estimated from the mapped deposits and the estimated background eruption rate. Posterior remobilization of pyroclastic flow material by stream erosion in the highly confined Barranca channels leads to lahar generation, either by normal rainfall, or by extreme rainfall events. A reassessment of the types of products and volumes erupted during the decade of 1970's allows comparing the activity happening since 1999 with the older activity, and suggests that many of the eruptive phenomena at Fuego may have similar mechanisms, despite the differences in scale between. The deposits of large pyroclastic flows erupted during the 1970's are remarkably similar in appearance to the deposit of pyroclastic flows from the 1999 - 2013 period, despite their much larger volume; this is also the case for prehistoric eruptions. Radiocarbon dating of pyroclastic flow deposits suggests that Fuego has produced large eruptions many times during the last ~ 2 ka, including larger eruptions during the last 500 years, which has important hazard implications. A survey was conducted among the local residents living near to the volcano, about their expectations of possible future crises. The results show that people are aware of the risk they could face in case of a large eruption, and therefore they are willing to evacuate in such case. However, their decision to evacuate may also be influenced by the conditions in which the evacuation could take place. If the evacuation represents a potential loss of their livelihood or property they will be more hesitant to leave their villages during a large eruption. The prospect of facing hardship conditions during the evacuation and in the shelters may further cause reluctance to evacuate. A short discussion on some of the issues regarding risk assessment and management through an early warning system is presented in the last chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral albedo was measured along a 6 km transect near the Allan Hills in East Antarctica. The transect traversed the sequence from new snow through old snow, firn, and white ice, to blue ice, showing a systematic progression of decreasing albedo at all wavelengths, as well as decreasing specific surface area (SSA) and increasing density. Broadband albedos under clear-sky range from 0.80 for snow to 0.57 for blue ice, and from 0.87 to 0.65 under cloud. Both air bubbles and cracks scatter sunlight; their contributions to SSA were determined by microcomputed tomography on core samples of the ice. Although albedo is governed primarily by the SSA (and secondarily by the shape) of bubbles or snow grains, albedo also correlates highly with porosity, which, as a proxy variable, would be easier for ice sheet models to predict than bubble sizes. Albedo parameterizations are therefore developed as a function of density for three broad wavelength bands commonly used in general circulation models: visible, near-infrared, and total solar. Relevance to Snowball Earth events derives from the likelihood that sublimation of equatorward-flowing sea glaciers during those events progressively exposed the same sequence of surface materials that we measured at Allan Hills, with our short 6 km transect representing a transect across many degrees of latitude on the Snowball ocean. At the equator of Snowball Earth, climate models predict thick ice, or thin ice, or open water, depending largely on their albedo parameterizations; our measured albedos appear to be within the range that favors ice hundreds of meters thick. Citation:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most recent submarine eruption observed offshore the Azores archipelago occurred between 1998-2001 along the submarine Serreta ridge (SSR), ~4-5 nautical miles WNW of Terceira Island. This submarine eruption delivered abundant basaltic lava balloons floating at the sea surface and significantly changed the bathymetry around the eruption area. Our work combines bathymetry, volcanic facies cartography, petrography, rock magnetism and geochemistry in order to (1) track the possible vent source at seabed, (2) better constrain the Azores magma source(s) sampled through the Serreta submarine volcanic event, and (3) interpret the data within the small-scale mantle source heterogeneity framework that has been demonstrated for the Azores archipelago. Lava balloons sampled at sea surface display a radiogenic signature, which is also correlated with relatively primitive (low) 4He/3He isotopic ratios. Conversely, SSR lavas are characterized by significantly lower radiogenic 87Sr/86Sr, 206Pb/204Pb and 208Pb/204Pb ratios than the lava balloons and the onshore lavas from the Terceira Island. SSR lavas are primitive, but incompatible trace-enriched. Apparent decoupling between the enriched incompatible trace element abundances and depleted radiogenic isotope ratios is best explained by binary mixing of a depleted MORB source and a HIMU­type component into magma batches that evolved by similar shallower processes in their travel to the surface. The collected data suggest that the freshest samples collected in the SSR may correspond to volcanic products of an unnoticed and more recent eruption than the 1998-2001 episode.