987 resultados para vertebrate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of contemporary ecotype formation through adaptive divergence of populations within the range of an invasive species typically requires standing genetic variation but can be facilitated by phenotypic plasticity. The relative contributions of both of these to adaptive trait differentiation have rarely been simultaneously quantified in recently diverging vertebrate populations. Here we study a case of intraspecific divergence into distinct lake and stream ecotypes of threespine stickleback that evolved in the past 140 years within the invasive range in Switzerland. Using a controlled laboratory experiment with full-sib crosses and treatments mimicking a key feature of ecotypic niche divergence, we test if the phenotypic divergence that we observe in the wild results from phenotypic plasticity or divergent genetic predisposition. Our experimental groups show qualitatively similar phenotypic divergence as those observed among wild adults. The relative contribution of plasticity and divergent genetic predisposition differs among the traits studied, with traits related to the biomechanics of feeding showing a stronger genetic predisposition, whereas traits related to locomotion are mainly plastic. These results implicate that phenotypic plasticity and standing genetic variation interacted during contemporary ecotype formation in this case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histone pre-mRNA 3' processing is controlled by a hairpin element preceding the processing site that interacts with a hairpin-binding protein (HBP) and a downstream spacer element that serves as anchoring site for the U7 snRNP. In addition, the nucleotides following the hairpin and surrounding the processing site (ACCCA'CA) are conserved among vertebrate histone genes. Single to triple nucleotide mutations of this sequence were tested for their ability to be processed in nuclear extract from animal cells. Changing the first four nucleotides had no qualitative and little if any quantitative effects on histone RNA 3' processing in mouse K21 cell extract, where processing of this gene is virtually independent of the HBP. A gel mobility shift assay revealing HBP interactions and a processing assay in HeLa cell extract (where the contribution of HBP to efficient processing is more important) showed that only one of these mutations, predicted to extend the hairpin by one base pair, affected the interaction with HBP. Mutations in the next three nucleotides affected both the cleavage efficiency and the choice of processing sites. Analysis of these novel sites indicated a preference for the nucleotide 5' of the cleavage site in the order A > C > U > G. Moreover, a guanosine in the 3' position inhibited cleavage. The preference for an A is shared with the cleavage/polyadenylation reaction, but the preference order for the other nucleotides is different [Chen F, MacDonald CC, Wilusz J, 1995, Nucleic Acids Res 23:2614-2620].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STRUCTURE OF CUPIENNIUS SALEI VENOM HYALURONIDASE Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40-60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. FUNCTION OF VENOM HYALURONIDASES Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well the current phylogenetic idea on a more isolated position of these families and can perhaps be explained by specialized prey catching techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an "oncofetal" protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epicardium is the mesothelial outer layer of the vertebrate heart. It plays an important role during cardiac development by, among other functions, nourishing the underlying myocardium, contributing to cardiac fibroblasts and giving rise to the coronary vasculature. The epicardium also exerts key functions during injury responses in the adult and contributes to cardiac repair. In this article, we review current knowledge on the cellular and molecular mechanisms underlying epicardium formation in the zebrafish, a teleost fish, which is rapidly gaining status as an animal model in cardiovascular research, and compare it with the mechanisms described in other vertebrate models. We moreover describe the expression patterns of a subset of available zebrafish Wilms' tumor 1 transgenic reporter lines and discuss their specificity, applicability and limitations in the study of epicardium formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zebrafish heart has the capacity to regenerate after ventricular resection. Although this regeneration model has proved useful for the elucidation of certain regeneration mechanisms, it is based on the removal of heart tissue rather than on tissue damage. We recently characterized the cellular response and regenerative capacity of the zebrafish heart after cryoinjury (CI), an alternative procedure that more closely models the pathophysiological process undergone by the human heart after myocardial infarction (MI). After anesthesia, localized CI with a liquid nitrogen-cooled copper probe induced damage in 25% of the ventricle, in a procedure requiring <5 min. Here we present a detailed description of the technique, which provides a valuable system for the study of the mechanisms of heart regeneration and scar removal after MI in a versatile vertebrate model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertebrate odd-skipped related genes (Osr) have an essential function during the formation of the intermediate mesoderm (IM) and the kidney structures derived from it. Here, we show that these genes are also crucial for limb bud formation in the adjacent lateral plate mesoderm (LPM). Reduction of zebrafish Osr function impairs fin development by the failure of tbx5a maintenance in the developing pectoral fin bud. Osr morphant embryos show reduced wnt2b expression, and increasing Wnt signaling in Osr morphant embryos partially rescues tbx5a expression. Thus, Osr genes control limb bud development in a non-cell-autonomous manner, probably through the activation of Wnt2b. Finally, we demonstrate that Osr genes are downstream targets of retinoic acid (RA) signaling. Therefore, Osr genes act as a relay within the genetic cascade of fin bud formation: by controlling the expression of the signaling molecule Wnt2ba in the IM they play an essential function transmitting the RA signaling originated in the somites to the LPM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertebrate limbs grow out from the flanks of embryos, with their main axis extending proximodistally from the trunk. Distinct limb domains, each with specific traits, are generated in a proximal-to-distal sequence during development. Diffusible factors expressed from signalling centres promote the outgrowth of limbs and specify their dorsoventral and anteroposterior axes. However, the molecular mechanism by which limb cells acquire their proximodistal (P-D) identity is unknown. Here we describe the role of the homeobox genes Meis1/2 and Pbx1 in the development of mouse, chicken and Drosophila limbs. We find that Meis1/2 expression is restricted to a proximal domain, coincident with the previously reported domain in which Pbx1 is localized to the nucleus, and resembling the distribution of the Drosophila homologues homothorax (hth) and extradenticle (exd); that Meis1 regulates Pbx1 activity by promoting nuclear import of the Pbx1 protein; and that ectopic expression of Meis1 in chicken and hth in Drosophila disrupts distal limb development and induces distal-to-proximal transformations. We suggest that restriction of Meis1/Hth to proximal regions of the vertebrate and insect limb is essential to specify cell fates and differentiation patterns along the P-D axis of the limb.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on different vertebrate groups have provided evidence that androgen levels in males increase after competitive social interactions during the breeding season, as postulated by the Challenge Hypothesis. However, social modulation of androgen levels may vary with latitude and may differ between species holding seasonal versus year-round territories. Here, we tested the Challenge Hypothesis on a seasonal tropical damselfish, Abudefduf sexfasciatus, where males temporarily defend territory and eggs against both intra- and interspecific individuals. Carrying out simulated territorial intrusions (STIs) in the laboratory, we document for the first time a consistent increase in the plasma level of the androgen precursor 11-ketoandrostenedione (11KA) in fish confronted to either intra- or interspecific challenges. Collecting samples in the field also revealed higher 11KA levels in fish facing frequent territorial interactions than in non-territorial individuals. Levels of 11-ketotestosterone (11KT) were high in territorial males in the field, but were not incremented after simulated territorial intrusions in the laboratory. Plasma levels of cortisol and testosterone were not affected by challenges but were different in wild and captive specimens. Although the endocrine responses to STIs did not differ between intra- and interspecific challenges, agonistic displays expressed by resident fish were more intense towards intraspecific intruders. Taken together, our study emphasizes the need to incorporate androgen precursor concentrations to advance our understanding on the physiology of territorial interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertebrate thyroid system is important for multiple developmental processes, including eye development. Thus, its environmentally induced disruption may impact important fitness-related parameters like visual capacities and behaviour. The present study investigated the relation between molecular effects of thyroid disruption and morphological and physiological changes of eye development in zebrafish (Danio rerio). Two test compounds representing different molecular modes of thyroid disruption were used: propylthiouracil (PTU), which is an enzyme-inhibitor of thyroid hormone synthesis, and tetrabromobisphenol A (TBBPA), which interacts with the thyroid hormone receptors. Both chemicals significantly altered transcript levels of thyroid system-related genes (TRα, TRβ, TPO, TSH, DIO1, DIO2 and DIO3) in a compound-specific way. Despite these different molecular response patterns, both treatments resulted in similar pathological alterations of the eyes such as reduced size, RPE cell diameter and pigmentation, which were concentration-dependent. The morphological changes translated into impaired visual performance of the larvae: the optokinetic response was significantly and concentration-dependently decreased in both treatments, together with a significant increase of light preference of PTU-treated larvae. In addition, swimming activity was impacted. This study provides first evidence that different modes of molecular action of the thyroid disruptors can be associated with uniform apical responses. Furthermore, this study is the first to show that pathological eye development, as it can be induced by exposure to thyroid disruptors, indeed translates into impaired visual capacities of zebrafish early life stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The human activation peptide of factor XIII (AP-FXIII) comprises the first 37 amino acids of the N-terminus and holds the FXIII in an inactive state. FXIII is activated either proteolytically by cleavage of AP-FXIII by thrombin, or non-proteolytically by high calcium concentrations. OBJECTIVE To investigate the role of AP-FXIII in the expression and stability of FXIII. METHODS We cloned 13 FXIII variants with progressive truncations of AP-FXIII from the N-terminus (delN-FXIII-A), expressed them in mammalian cells, and measured their thermostability, activation, and transglutaminase activity. We also used in silico calculations to analyze the stability of hypothetical delN-FXIII dimers and to identify crucial motifs within AP-FXIII. RESULTS Variants with deletions longer than the first 10 amino acids and an R11Q point mutant were not expressed as proteins. In silico calculations indicated that the sequence (8) FGGR(12) R plays a substantial role in intersubunit interactions in FXIII-A2 homodimers. In agreement with this prediction, the temperature stability of delN-FXIII variants decreased with increasing length of deletion. These results may suggest a role of the N-terminus of AP-FXIII in dimer stability. Substantial sequence homology was found among activation peptides of vertebrate and even invertebrate (crustacean) FXIII-A orthologs, which further supports our conclusion. CONCLUSIONS We conclude that deletion of 11 or more N-terminal amino acids disrupts intersubunit interactions, which may prevent FXIII-A2 homodimer formation. Therefore, AP-FXIII plays an important role in the stability of the FXIII-A2 dimer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In classical conditioning, an associative form of learning, animals learn to associate two stimuli. Cellular and molecular mechanisms for the induction and consolidation of associative learning and memory at the level of single cells and synaptic connections have been studied in both vertebrate and invertebrate animals. The majority of studies, however, relied on aversive stimuli to induce learning. This bias may limit the extent to which identified mechanisms generalize to other forms of associative learning and memory, such as appetitive forms. The goal of the present study was to develop a classical conditioning procedure for the marine mollusk Aplysia californica using appetitive reinforcement, and to analyze associative learning using behavioral and electrophysiological techniques. ^ Using tactile stimulation of the lips as the conditional stimulus (CS) and food as the unconditional stimulus (US) a training protocol was developed that reliably induced classical conditioning of feeding behavior. Memory persisted for at least 24 hours. The gross organization of reinforcement-mediating pathways was analyzed in additional behavioral experiments. Moreover, neurophysiological correlates of classical conditioning were identified and characterized in an in vitro preparation containing the circuitry for feeding behavior. In vitro stimulation of a nerve (AT4) that may mediate the CS during training, resulted in a greater number of buccal motor patterns (BMPs) in brains from conditioned animals, as compared to control animals. The majority of these BMPs were ingestion-like, consistent with the increased number of bites in response to the CS after classical conditioning. Moreover, classical conditioning correlated with increased excitatory synaptic input to BMP-initiating neuron B31/32, in response to stimulation of AT 4, as compared to controls. The expression of the correlates of classical conditioning identified in this study was specific to stimulation of AT 4, which is consistent the stimulus specificity that is characteristic for classical conditioning. ^ The identification of cellular correlates of classical conditioning documented here provides the basis for future, more detailed analyses of an appetitive form of associative learning and memory, that may extend the working knowledge of the cellular and molecular mechanisms for associative plasticity in general. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of the vertebrate face is an extremely complex developmental process, which needs to coordinate the outgrowth of several facial primordia. Facial primordia are small buds made up of mesenchymal masses enclosed by an epithelial layer that surrounds the primitive mouth. The upper jaw is formed by the maxillary process, the lateral nasal process, and the frontonasal process while the mandibular process forms the lower jaw. Recent experiments using genetics in mice and bead implantation approaches have shown that the pitx2 homeobox gene and Bmp signaling play important roles in this complex developmental process. However, the molecular mechanisms underlying the function of pitx2 and Bmp in these events are still unclear. Here, we show that pitx2 is required for oral epithelium maintenance, and branchial arch signaling is pitx2 dosage sensitive by using pitx2 allelic combinations that encode varying levels of pitx2. Maintenance of fgf8 signaling requires only low pitx2 dosage while repression of Bmp signaling requires high pitx2 levels. Different incisor and molar phenotypes in low level pitx2 mutant embryos suggest a distinct requirement for pitx2 in tooth-type development. The results show that pitx2 is required for craniofacial muscle formation and expanded Bmp signaling results in excess bone formation in pitx2 mutant embryos. Fate-mapping studies show that ectopic bone results from excessive bone growth, instead of muscle transformation. Moreover, by using cre/loxp system we show that partial loss of Bmpr-IA in the facial primordia results in cleft lip/palate, abnormal teeth, ectopic teeth and tooth transformation. These phenotypes suggest that Bmp signaling has multiple functions during craniofacial development. The mutant palate shelves can fuse with each other when cultured in vitro, suggesting that cleft palate is secondary to the partial loss of Bmpr-IA. Furthermore, we prove that Bmp4, one of the ligands of Bmpr-IA, plays a role during lip fusion developmental process and partial loss of Bmp4 in the facial primordia results in the lip fusion delay. These results have provided insight to understand the complex signaling cascades that regulate craniofacial development. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex molecular events underlie vertebrate eye development and disease. The eye is composed of two major tissue types: the anterior and posterior segments. During development, the retinal progenitor cells differentiate into six neuronal and one non-neuronal cell types. These cell types later organize into the distinct laminar structure of the mature retina which occupies the posterior segment. In the developed anterior segment, both the ciliary body and trabecular meshwork regulate intraocular pressure created by the aqueous humor. The disruption in intraocular pressure can lead to a blinding condition called glaucoma. To characterize molecular mechanisms governing retinal development and glaucoma, two separate mouse knockout lines carrying mutations in math5 and myocilin were subjected to a series of in vivo analyses. ^ Math5 is a murine homologue of Drosophila atonal , a bHLH proneural gene essential for the formation of photoreceptor cells. The expression of math5 coincides with the onset of retinal ganglion cell differentiation. The targeted deletion of mouse math5 revealed that a null mutation inhibits the formation of a majority of the retinal ganglion cells. The mutation also interferes with the normal development of other retinal cell types such as amacrine, bipolar and photoreceptor cells. These results suggest that math5 is a proneural gene responsible for differentiation of retinal ganglion cells and may also have a role in normal development of other neuronal cell types within the retina. ^ Myocilin has two unique protein coding regions bearing homology to non-muscle myosin of Dictyostelium discoideum and to olfactomedin, an extracellular matrix molecule first described in the olfactory epithelium of the bullfrog. Recently, autosomal dominant forms of myocilin mutations have been found in individuals with primary open-angle glaucoma. The genetic linkage to glaucoma suggests a role of myocilin in normal intraocular pressure and ocular function. However, the analysis of mice heterozygous and homozygous for a targeted null mutation in myocilin indicates that it is dispensable for normal intraocular pressure or ocular function. Additionally, the lack of a discernable phenotype in both heterozygous and null mice suggests that haploinsufficiency is not a critical mechanism for MYOC-associated glaucoma in humans. Instead, disease-causing mutations likely act by gain of function. ^ In summary, these studies provide novel insights into the embryonic development of the vertebrate retina, and also begin to uncover the molecular mechanisms responsible for the pathogenesis of glaucoma. ^