992 resultados para variable sampling interval
Resumo:
The North American Breeding Bird Survey (BBS) is the principal source of data to inform researchers about the status of and trend for boreal forest birds. Unfortunately, little BBS coverage is available in the boreal forest, where increasing concern over the status of species breeding there has increased interest in northward expansion of the BBS. However, high disturbance rates in the boreal forest may complicate roadside monitoring. If the roadside sampling frame does not capture variation in disturbance rates because of either road placement or the use of roads for resource extraction, biased trend estimates might result. In this study, we examined roadside bias in the proportional representation of habitat disturbance via spatial data on forest “loss,” forest fires, and anthropogenic disturbance. In each of 455 BBS routes, the area disturbed within multiple buffers away from the road was calculated and compared against the area disturbed in degree blocks and BBS strata. We found a nonlinear relationship between bias and distance from the road, suggesting forest loss and forest fires were underrepresented below 75 and 100 m, respectively. In contrast, anthropogenic disturbance was overrepresented at distances below 500 m and underrepresented thereafter. After accounting for distance from road, BBS routes were reasonably representative of the degree blocks they were within, with only a few strata showing biased representation. In general, anthropogenic disturbance is overrepresented in southern strata, and forest fires are underrepresented in almost all strata. Similar biases exist when comparing the entire road network and the subset sampled by BBS routes against the amount of disturbance within BBS strata; however, the magnitude of biases differed. Based on our results, we recommend that spatial stratification and rotating panel designs be used to spread limited BBS and off-road sampling effort in an unbiased fashion and that new BBS routes be established where sufficient road coverage exists.
Resumo:
In this paper it is argued that rotational wind is not the best choice of leading control variable for variational data assimilation, and an alternative is suggested and tested. A rotational wind parameter is used in most global variational assimilation systems as a pragmatic way of approximately representing the balanced component of the assimilation increments. In effect, rotational wind is treated as a proxy for potential vorticity, but one that it is potentially not a good choice in flow regimes characterised by small Burger number. This paper reports on an alternative set of control variables which are based around potential vorticity. This gives rise to a new formulation of the background error covariances for the Met Office's variational assimilation system, which leads to flow dependency. It uses similar balance relationships to traditional schemes, but recognises the existence of unbalanced rotational wind which is used with a new anti-balance relationship. The new scheme is described and its performance is evaluated and compared to a traditional scheme using a sample of diagnostics.
Resumo:
In the Radiative Atmospheric Divergence Using ARM Mobile Facility GERB and AMMA Stations (RADAGAST) project we calculate the divergence of radiative flux across the atmosphere by comparing fluxes measured at each end of an atmospheric column above Niamey, in the African Sahel region. The combination of broadband flux measurements from geostationary orbit and the deployment for over 12 months of a comprehensive suite of active and passive instrumentation at the surface eliminates a number of sampling issues that could otherwise affect divergence calculations of this sort. However, one sampling issue that challenges the project is the fact that the surface flux data are essentially measurements made at a point, while the top-of-atmosphere values are taken over a solid angle that corresponds to an area at the surface of some 2500 km2. Variability of cloud cover and aerosol loading in the atmosphere mean that the downwelling fluxes, even when averaged over a day, will not be an exact match to the area-averaged value over that larger area, although we might expect that it is an unbiased estimate thereof. The heterogeneity of the surface, for example, fixed variations in albedo, further means that there is a likely systematic difference in the corresponding upwelling fluxes. In this paper we characterize and quantify this spatial sampling problem. We bound the root-mean-square error in the downwelling fluxes by exploiting a second set of surface flux measurements from a site that was run in parallel with the main deployment. The differences in the two sets of fluxes lead us to an upper bound to the sampling uncertainty, and their correlation leads to another which is probably optimistic as it requires certain other conditions to be met. For the upwelling fluxes we use data products from a number of satellite instruments to characterize the relevant heterogeneities and so estimate the systematic effects that arise from the flux measurements having to be taken at a single point. The sampling uncertainties vary with the season, being higher during the monsoon period. We find that the sampling errors for the daily average flux are small for the shortwave irradiance, generally less than 5 W m−2, under relatively clear skies, but these increase to about 10 W m−2 during the monsoon. For the upwelling fluxes, again taking daily averages, systematic errors are of order 10 W m−2 as a result of albedo variability. The uncertainty on the longwave component of the surface radiation budget is smaller than that on the shortwave component, in all conditions, but a bias of 4 W m−2 is calculated to exist in the surface leaving longwave flux.
Resumo:
The Representative Soil Sampling Scheme (RSSS) has monitored the soil of agricultural land in England and Wales since 1969. Here we describe the first spatial analysis of the data from these surveys using geostatistics. Four years of data (1971, 1981, 1991 and 2001) were chosen to examine the nutrient (available K, Mg and P) and pH status of the soil. At each farm, four fields were sampled; however, for the earlier years, coordinates were available for the farm only and not for each field. The averaged data for each farm were used for spatial analysis and the variograms showed spatial structure even with the smaller sample size. These variograms provide a reasonable summary of the larger scale of variation identified from the data of the more intensively sampled National Soil Inventory. Maps of kriged predictions of K generally show larger values in the central and southeastern areas (above 200 mg L-1) and an increase in values in the west over time, whereas Mg is fairly stable over time. The kriged predictions of P show a decline over time, particularly in the east, and those of pH show an increase in the east over time. Disjunctive kriging was used to examine temporal changes in available P using probabilities less than given thresholds of this element. The RSSS was not designed for spatial analysis, but the results show that the data from these surveys are suitable for this purpose. The results of the spatial analysis, together with those of the statistical analyses, provide a comprehensive view of the RSSS database as a basis for monitoring the soil. These data should be taken into account when future national soil monitoring schemes are designed.
Resumo:
Large temperature variations on land, in the air, and at the ocean surface, and highly variable flux of ice-rafted debris (IRD) delivered to the North Atlantic Ocean show that rapid climate fluctuations took place during the last glacial period. These quasi-periodic, high-amplitude climate variations followed a sequence of events recognized as a rapid warming, followed by a phase of gradual cooling, and terminating with more rapid cooling and increased flux of IRD to the north Atlantic Ocean. Each cycle lasted ˜1500 years, and was followed by an almost identical sequence. These cycles are referred to as Dansgaard/Oechger cycles (D/O cycles), and approximately every fourth cycle culminated in a more pronounced cooling with a massive discharge of IRD into the north Atlantic Ocean over an interval of ˜500 years. These massive discharges of IRD are known as Heinrich layers. “Heinrich events” are thus characterized as a rapid transfer of IRD from a “source,” the bed of the Laurentide Ice Sheet (LIS), to a “sink,” the North Atlantic.
Resumo:
Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Data such as digitized aerial photographs, electrical conductivity and yield are intensive and relatively inexpensive to obtain compared with collecting soil data by sampling. If such ancillary data are co-regionalized with the soil data they should be suitable for co-kriging. The latter requires that information for both variables is co-located at several locations; this is rarely so for soil and ancillary data. To solve this problem, we have derived values for the ancillary variable at the soil sampling locations by averaging the values within a radius of 15 m, taking the nearest-neighbour value, kriging over 5 m blocks, and punctual kriging. The cross-variograms from these data with clay content and also the pseudo cross-variogram were used to co-krige to validation points and the root mean squared errors (RMSEs) were calculated. In general, the data averaged within 15m and the punctually kriged values resulted in more accurate predictions.
Resumo:
As part of the European Commission (EC)'s revision of the Sewage Sludge Directive and the development of a Biowaste Directive, there was recognition of the difficulty of comparing data from Member States (MSs) because of differences in sampling and analytical procedures. The 'HORIZONTAL' initiative, funded by the EC and MSs, seeks to address these differences in approach and to produce standardised procedures in the form of CEN standards. This article is a preliminary investigation into aspects of the sampling of biosolids, composts and soils to which there is a history of biosolid application. The article provides information on the measurement uncertainty associated with sampling from heaps, large bags and pipes and soils in the landscape under a limited set of conditions, using sampling approaches in space and time and sample numbers based on procedures widely used in the relevant industries and when sampling similar materials. These preliminary results suggest that considerably more information is required before the appropriate sample design, optimum number of samples, number of samples comprising a composite, and temporal and spatial frequency of sampling might be recommended to achieve consistent results of a high level of precision and confidence. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Representative Soil Sampling Scheme of England and Wales has recorded information on the soil of agricultural land in England and Wales since 1969. It is a valuable source of information about the soil in the context of monitoring for sustainable agricultural development. Changes in soil nutrient status and pH were examined over the period 1971-2001. Several methods of statistical analysis were applied to data from the surveys during this period. The main focus here is on the data for 1971, 1981, 1991 and 2001. The results of examining change over time in general show that levels of potassium in the soil have increased, those of magnesium have remained fairly constant, those of phosphorus have declined and pH has changed little. Future sampling needs have been assessed in the context of monitoring, to determine the mean at a given level of confidence and tolerable error and to detect change in the mean over time at these same levels over periods of 5 and 10 years. The results of a non-hierarchical multivariate classification suggest that England and Wales could be stratified to optimize future sampling and analysis. To monitor soil quality and health more generally than for agriculture, more of the country should be sampled and a wider range of properties recorded.