878 resultados para user authentication
Resumo:
Surgical interventions are usually performed in an operation room; however, access to the information by the medical team members during the intervention is limited. While in conversations with the medical staff, we observed that they attach significant importance to the improvement of the information and communication direct access by queries during the process in real time. It is due to the fact that the procedure is rather slow and there is lack of interaction with the systems in the operation room. These systems can be integrated on the Cloud adding new functionalities to the existing systems the medical expedients are processed. Therefore, such a communication system needs to be built upon the information and interaction access specifically designed and developed to aid the medical specialists. Copyright 2014 ACM.
Resumo:
This paper presents an easy to use methodology and system for insurance companies targeting at managing traffic accidents reports process. The main objective is to facilitate and accelerate the process of creating and finalizing the necessary accident reports in cases without mortal victims involved. The diverse entities participating in the process from the moment an accident occurs until the related final actions needed are included. Nowadays, this market is limited to the consulting platforms offered by the insurance companies. Copyright 2014 ACM.
Resumo:
I-SMART is an Internet-based client management system that allows the State of Iowa and its licensed substance abuse treatment providers to administer, manage and provide cost efficient and quality substance abuse assessment and treatment services. Implementation of the I-SMART System is a key product in meeting the federal government requirements for National Outcome Monitoring System (NOMS).
Resumo:
Appendix to 2015/16 annual report.
Resumo:
Introduction to Animal GRIN; Navigating the Database; Setting Up the Database (Super Users); Create Taxonomy Structure; Set Up Location Structure; Form Descriptions (All Users); Form Descriptions (Super Users); Entering Shipments; E-R Diagram for Incoming Orders; Entering Requests; Reports.
Resumo:
The ever-growing interest in scientific techniques, able to characterise the materials and rediscover the steps behind the execution of a painting, makes them widely accepted in its investigation. This research discusses issues emerging from attribution and authentication studies and proposes best practise for the characterisation of materials and techniques, favouring the contextualisation of the results in an integrated approach; the work aims to systematically classify paintings in categories that aid the examination of objects. A first grouping of paintings is based on the information initially available on them, identifying four categories. A focus of this study is the examination of case studies, spanning from the 16th to the 20th century, to evaluate and validate different protocols associated to each category, to show problems arising from paintings and explain advantages and limits of the approach. The research methodology incorporates a combined set of scientific techniques (non-invasive, such as technical imaging and XRF, micro-invasive, such as optical microscopy, SEM-EDS, FTIR, Raman microscopy and in one case radiocarbon dating) to answer the questions and, if necessary for the classification, exhaustively characterise the materials of the paintings, as the creation and contribution of shared technical databases related to various artists and their evolution over time is an objective tool that benefits this kind of study. The reliability of a close collaboration among different professionals is an essential aspect of this research to comprehensively study a painting, as the integration of stylistic, documentary and provenance studies corroborates the scientific findings and helps in the successful contextualisation of the results and the reconstruction of the history of the object.
Resumo:
In rural and isolated areas without cellular coverage, Satellite Communication (SatCom) is the best candidate to complement terrestrial coverage. However, the main challenge for future generations of wireless networks will be to meet the growing demand for new services while dealing with the scarcity of frequency spectrum. As a result, it is critical to investigate more efficient methods of utilizing the limited bandwidth; and resource sharing is likely the only choice. The research community’s focus has recently shifted towards the interference management and exploitation paradigm to meet the increasing data traffic demands. In the Downlink (DL) and Feedspace (FS), LEO satellites with an on-board antenna array can offer service to numerous User Terminals (UTs) (VSAT or Handhelds) on-ground in FFR schemes by using cutting-edge digital beamforming techniques. Considering this setup, the adoption of an effective user scheduling approach is a critical aspect given the unusually high density of User terminals on the ground as compared to the on-board available satellite antennas. In this context, one possibility is that of exploiting clustering algorithms for scheduling in LEO MU-MIMO systems in which several users within the same group are simultaneously served by the satellite via Space Division Multiplexing (SDM), and then these different user groups are served in different time slots via Time Division Multiplexing (TDM). This thesis addresses this problem by defining a user scheduling problem as an optimization problem and discusses several algorithms to solve it. In particular, focusing on the FS and user service link (i.e., DL) of a single MB-LEO satellite operating below 6 GHz, the user scheduling problem in the Frequency Division Duplex (FDD) mode is addressed. The proposed State-of-the-Art scheduling approaches are based on graph theory. The proposed solution offers high performance in terms of per-user capacity, Sum-rate capacity, SINR, and Spectral Efficiency.
Resumo:
In epoca contemporanea, la tecnologia ha subito una diffusione massiva e ha pervaso ogni ambito della vita dell’uomo, che sia esso scolastico, lavorativo, o ludico, cambiandone così radicalmente lo stile di vita sotto tutti i punti di vista. Sono infatti numerosissimi gli strumenti informatici che ad oggi supportano l'esercizio della maggior parte delle professioni, e che risultano peraltro ogni giorno più accurati e potenti: questo è il caso di Nutribook, un software gestionale in-cloud pensato per assistere i professionisti del mondo della nutrizione (Biologi Nutrizionisti, Dietologi, Dietisti) nelle attività quotidiane di visita dei pazienti e nell’organizzazione della propria agenda. Nell'ottica di poter offrire agli utenti un servizio sempre più esteso, il presente elaborato riporta il progetto di tesi svolto presso Deasoft s.r.l., azienda proprietaria di Nutribook, volto ad integrare tale software con un modulo dedicato all’attività di elaborazione di diete e piani alimentari. L'obiettivo principale del progetto presentato nell’elaborato risiede non solo nell'aspetto realizzativo del prodotto, ma anche nel tentativo di renderne la fruizione da parte dell'utente target il più possibile semplice, intuitiva e soddisfacente, mediante tecniche di potenziamento della User Experience. Il tirocinio per la redazione della presente tesi, nato a partire dall’esperienza di tirocinio curricolare, ha previsto come attività principali la conduzione di studi approfonditi in materia di User Experience, la partecipazione alla fase di analisi del dominio e dei requisiti e, infine, la collaborazione al design delle interfacce da realizzare mediante prototipi.
Resumo:
L'obiettivo di questo lavoro di tesi è, quindi, quello di studiare delle soluzioni all'avanguardia ed effettuare la progettazione di un nuovo modulo innovativo di una web app attualmente in uso sul sito #Cesenadavivere di Casa Bufalini. Quest'ultima dovrà essere in grado di introdurre la navigazione di percorsi in modalità gaming, cioè tramite funzioni di riconoscimento automatico di punti di interesse come monumenti, edifici o stanze, a partire da immagini di elementi che li caratterizzano. Il progetto prevede anche di analizzare lo stato dell'arte dello sviluppo della web app e definirne al meglio l'evoluzione. Per renderlo possibile è necessario uno studio approfondito dello stato dell'arte di User Experience e Gamification. Queste due materie vengono sempre più utilizzate nella progettazione di applicazioni e tecnologie di contesti non di gioco, con il fine di aumentare il coinvolgimento degli utenti e migliorando la qualità del prodotto finale. Infatti, queste tecniche sono tutt'altro che utilizzate per il solo scopo di gioco, ma hanno il compito di rendere più fruibili e coinvolgenti le partecipazioni o utilizzi delle persone. L'obiettivo finale è quello di realizzare e proporre la realizzazione di un prototipo dell'interfaccia grafica che successivamente verrà valutata con un coinvolgimento di utenti target. Il risultato atteso sarà ottenere la migliore interfaccia grafica per soddisfare le necessità date dalla scelta delle possibili tecnologie da utilizzare. Queste necessità verranno prima ipotizzate dallo studio dello stato dell'arte delle materie e della piattaforma e poi verranno successivamente convalidate tramite dei test, i quali verranno effettuati cercando di coinvolgere un numero che vada da minimo cinque a dieci persone.
Resumo:
The study of the user scheduling problem in a Low Earth Orbit (LEO) Multi-User MIMO system is the objective of this thesis. With the application of cutting-edge digital beamforming algorithms, a LEO satellite with an antenna array and a large number of antenna elements can provide service to many user terminals (UTs) in full frequency reuse (FFR) schemes. Since the number of UTs on-ground are many more than the transmit antennas on the satellite, user scheduling is necessary. Scheduling can be accomplished by grouping users into different clusters: users within the same cluster are multiplexed and served together via Space Division Multiple Access (SDMA), i.e., digital beamforming or Multi-User MIMO techniques; the different clusters of users are then served on different time slots via Time Division Multiple Access (TDMA). The design of an optimal user grouping strategy is known to be an NP-complete problem which can be solved only through exhaustive search. In this thesis, we provide a graph-based user scheduling and feed space beamforming architecture for the downlink with the aim of reducing user inter-beam interference. The main idea is based on clustering users whose pairwise great-circle distance is as large as possible. First, we create a graph where the users represent the vertices, whereas an edge in the graph between 2 users exists if their great-circle distance is above a certain threshold. In the second step, we develop a low complex greedy user clustering technique and we iteratively search for the maximum clique in the graph, i.e., the largest fully connected subgraph in the graph. Finally, by using the 3 aforementioned power normalization techniques, a Minimum Mean Square Error (MMSE) beamforming matrix is deployed on a cluster basis. The suggested scheduling system is compared with a position-based scheduler, which generates a beam lattice on the ground and randomly selects one user per beam to form a cluster.
Resumo:
The vast majority of maternal deaths in low-and middle-income countries are preventable. Delay in obtaining access to appropriate health care is a fairly common problem which can be improved. The objective of this study was to explore the association between delay in providing obstetric health care and severe maternal morbidity/death. This was a multicentre cross-sectional study, involving 27 referral obstetric facilities in all Brazilian regions between 2009 and 2010. All women admitted to the hospital with a pregnancy-related cause were screened, searching for potentially life-threatening conditions (PLTC), maternal death (MD) and maternal near-miss (MNM) cases, according to the WHO criteria. Data on delays were collected by medical chart review and interview with the medical staff. The prevalence of the three different types of delays was estimated according to the level of care and outcome of the complication. For factors associated with any delay, the PR and 95%CI controlled for cluster design were estimated. A total of 82,144 live births were screened, with 9,555 PLTC, MNM or MD cases prospectively identified. Overall, any type of delay was observed in 53.8% of cases; delay related to user factors was observed in 10.2%, 34.6% of delays were related to health service accessibility and 25.7% were related to quality of medical care. The occurrence of any delay was associated with increasing severity of maternal outcome: 52% in PLTC, 68.4% in MNM and 84.1% in MD. Although this was not a population-based study and the results could not be generalized, there was a very clear and significant association between frequency of delay and severity of outcome, suggesting that timely and proper management are related to survival.
Resumo:
High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Resumo:
Balsamic vinegar (BV) is a typical and valuable Italian product, worldwide appreciated thanks to its characteristic flavors and potential health benefits. Several studies have been conducted to assess physicochemical and microbial compositions of BV, as well as its beneficial properties. Due to highly-disseminated claims of antioxidant, antihypertensive and antiglycemic properties, BV is a known target for frauds and adulterations. For that matter, product authentication, certifying its origin (region or country) and thus the processing conditions, is becoming a growing concern. Striving for fraud reduction as well as quality and safety assurance, reliable analytical strategies to rapidly evaluate BV quality are very interesting, also from an economical point of view. This work employs silica plate laser desorption/ionization mass spectrometry (SP-LDI-MS) for fast chemical profiling of commercial BV samples with protected geographical indication (PGI) and identification of its adulterated samples with low-priced vinegars, namely apple, alcohol and red/white wines.
Resumo:
The consumption of dietary supplements is highest among athletes and it can represent potential a health risk for consumers. The aim of this study was to determine the prevalence of consumption of dietary supplements by road runners. We interviewed 817 volunteers from four road races in the Brazilian running calendar. The sample consisted of 671 male and 146 female runners with a mean age of 37.9 ± 12.4 years. Of the sample, 28.33% reported having used some type of dietary supplement. The main motivation for this consumption is to increase in stamina and improve performance. The probability of consuming dietary supplements increased 4.67 times when the runners were guided by coaches. The consumption of supplements was strongly correlated (r = 0.97) with weekly running distance, and also highly correlated (r = 0.86) with the number of years the sport had been practiced. The longer the runner had practiced the sport, the higher the training volume and the greater the intake of supplements. The five most frequently cited reasons for consumption were: energy enhancement (29.5%), performance improvement (17.1%), increased level of endurance (10.3%), nutrient replacement (11.1%), and avoidance of fatigue (10.3%). About 30% of the consumers declared more than one reason for taking dietary supplements. The most consumed supplements were: carbohydrates (52.17%), vitamins (28.70%), and proteins (13.48%). Supplement consumption by road runners in Brazil appeared to be guided by the energy boosting properties of the supplement, the influence of coaches, and the experience of the user. The amount of supplement intake seemed to be lower among road runners than for athletes of other sports. We recommend that coaches and nutritionists emphasise that a balanced diet can meet the needs of physically active people.
Resumo:
Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies. The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV-220 keV were superimposed on a geometric DNA model composed of 2.7 × 10(6) nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy ETH. The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands. Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when ETH ≈ 10.79 eV, but deviate significantly for higher ETH values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their implementations. The authors' show that, for the four studied models, different yields are expected by up to 54% for SSBs and by up to 32% for DSBs, as a function of the incident electrons energy and of the models being compared. MCTS simulations allow to compare direct DNA damage types and complexities induced by ionizing radiation. However, simulation results depend to a large degree on user-defined parameters, definitions, and algorithms such as: DNA model, dose distribution, SB definition, and the DNA damage clustering algorithm. These interdependencies should be well controlled during the simulations and explicitly reported when comparing results to experiments or calculations.