900 resultados para type systems, join calculus, ownership types, process calculus
Resumo:
Erzsebet Szalai (Hungary). The Hungarian Economic Elite after the Political Transition. Ms. Szalai is a research fellow in the Institute of Political Sciences in Budapest and worked on this project from July 1996 to June 1998. In the period following the political changes of 1989, the leading forces of the economic elite have gained increasing superiority over the political and cultural elites, with the clear ambition of putting the latter to their service. The power relations within the economic elite were characterised by "a war of all against all". The desire to gain precedence over others became an openly declared value. The formation of estates and the intensification of competition became embodied in a multitude of lobbies which cropped up to assert short-term interests. After the state socialist period, possession of at least two of the social, economic and cultural forms of capital is necessary to join one of the three segments of the elite: political, cultural or economic. What defines the ability of the members of the three elite groups to assert their interests is their ability to convert any of the three types of capital into another. That is to say, the basis on which they can retain and extend their position is "symbolic capital" as interpreted by Bourdieu. The concept of symbolic capital is useful for describing the power relations following the collapse of state socialist systems and societies. In the state-socialist system, the political, economic and cultural spheres are tightly interwoven, and this interpenetration slackens only slowly after the system's disintegration. A close institutional relationship between the three spheres continues to make it easier for power actors to convert social, economic and cultural capital from one type to another. Symbolic capital, or the easy transfer between the three spheres, in turn reproduces the institutional relationship, or more precisely, complicates the separation of the three spheres after the fall of state socialism.
Resumo:
The human respiratory tract pathogen Moraxella catarrhalis is a naturally competent microorganism. However, electrotransformation has long been used to introduce foreign DNA into this organism. This study demonstrated that electrotransformants obtained with linear or circular nonreplicating plasmid DNA originated exclusively from natural transformation processes taking place during the recovery phase after the application of current. Only replicating plasmid DNA could be introduced into M. catarrhalis by electrotransformation, in a type IV pilus-independent manner. Electrotransformation with homologous genomic DNA indicated that restriction of double-stranded DNA was independent of type III restriction-methylation systems. Nontransformability of M. catarrhalis by electrotransformation was observed using double- as well as single-stranded DNA. In addition, the study showed that natural competence is a very constant feature of M. catarrhalis.
Resumo:
Heterosis is widely used in breeding, but the genetic basis of this biological phenomenon has not been elucidated. We postulate that additive and dominance genetic effects as well as two-locus interactions estimated in classical QTL analyses are not sufficient for quantifying the contributions of QTL to heterosis. A general theoretical framework for determining the contributions of different types of genetic effects to heterosis was developed. Additive x additive epistatic interactions of individual loci with the entire genetic background were identified as a major component of midparent heterosis. On the basis of these findings we defined a new type of heterotic effect denoted as augmented dominance effect di* that comprises the dominance effect at each QTL minus half the sum of additive x additive interactions with all other QTL. We demonstrate that genotypic expectations of QTL effects obtained from analyses with the design III using testcrosses of recombinant inbred lines and composite-interval mapping precisely equal genotypic expectations of midparent heterosis, thus identifying genomic regions relevant for expression of heterosis. The theory for QTL mapping of multiple traits is extended to the simultaneous mapping of newly defined genetic effects to improve the power of QTL detection and distinguish between dominance and overdominance.
Resumo:
The purpose of this study is to provide a procedure to include emissions to the atmosphere resulting from the combustion of diesel fuel during dredging operations into the decision-making process of dredging equipment selection. The proposed procedure is demonstrated for typical dredging methods and data from the Illinois Waterway as performed by the U.S. Army Corps of Engineers, Rock Island District. The equipment included in this study is a 16-inch cutterhead pipeline dredge and a mechanical bucket dredge used during the 2005 dredging season on the Illinois Waterway. Considerable effort has been put forth to identify and reduce environmental impacts from dredging operations. Though environmental impacts of dredging have been studied no efforts have been applied to the evaluation of air emissions from comparable types of dredging equipment, as in this study. By identifying the type of dredging equipment with the lowest air emissions, when cost, site conditions, and equipment availability are comparable, adverse environmental impacts can be minimized without compromising the dredging project. A total of 48 scenarios were developed by varying the dredged material quantity, transport distance, and production rates. This produced an “envelope” of results applicable to a broad range of site conditions. Total diesel fuel consumed was calculated using standard cost estimating practices as defined in the U.S. Army Corps of Engineers Construction Equipment Ownership and Operating Expense Schedule (USACE, 2005). The diesel fuel usage was estimated for all equipment used to mobilize and/or operate each dredging crew for every scenario. A Limited Life Cycle Assessment (LCA) was used to estimate the air emissions from two comparable dredging operations utilizing SimaPro LCA software. An Environmental Impact Single Score (EISS) was the SimaPro output selected for comparison with the cost per CY of dredging, potential production rates, and transport distances to identify possible decision points. The total dredging time was estimated for each dredging crew and scenario. An average hourly cost for both dredging crews was calculated based on Rock Island District 2005 dredging season records (Graham 2007/08). The results from this study confirm commonly used rules of thumb in the dredging industry by indicating that mechanical bucket dredges are better suited for long transport distances and have lower air emissions and cost per CY for smaller quantities of dredged material. In addition, the results show that a cutterhead pipeline dredge would be preferable for moderate and large volumes of dredged material when no additional booster pumps are required. Finally, the results indicate that production rates can be a significant factor when evaluating the air emissions from comparable dredging equipment.
Resumo:
With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2µm to 6µm have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (~200 degrees C) and thick/soft bonding layers (~6µm) have been achieved by In-Au bondi ng technology, which is able to compensate the potentially rough surface on the porous silicon sample without introducing significant thermal stress. The application of the porous silicon material in micro systems has been demonstrated in a micro gas chromatograph system by two indispensable components: an integrated vapor source and an inlet filter, wherein porous silicon performs the basic functions of porous media: wicking and filtration. By utilizing a macro porous silicon wick, the calibration vapor source was able to produce a uniform and repeatable vapor generation for n-decane with less than a 0.1% variation in 9 hours, and less than a 0.5% variation in rate over 7 days. With engineered porous silicon membranes the inlet filter was able to show a depth filtration with nearly 100% collection efficiency for particles larger than 0.3µm in diameter, a low pressure-drop of 523Pa at 20sccm flow rate, and a filter capacity of 500µg/cm2.
Resumo:
The numerical solution of the incompressible Navier-Stokes Equations offers an effective alternative to the experimental analysis of Fluid-Structure interaction i.e. dynamical coupling between a fluid and a solid which otherwise is very complex, time consuming and very expensive. To have a method which can accurately model these types of mechanical systems by numerical solutions becomes a great option, since these advantages are even more obvious when considering huge structures like bridges, high rise buildings, or even wind turbine blades with diameters as large as 200 meters. The modeling of such processes, however, involves complex multiphysics problems along with complex geometries. This thesis focuses on a novel vorticity-velocity formulation called the KLE to solve the incompressible Navier-stokes equations for such FSI problems. This scheme allows for the implementation of robust adaptive ODE time integration schemes and thus allows us to tackle the various multiphysics problems as separate modules. The current algorithm for KLE employs a structured or unstructured mesh for spatial discretization and it allows the use of a self-adaptive or fixed time step ODE solver while dealing with unsteady problems. This research deals with the analysis of the effects of the Courant-Friedrichs-Lewy (CFL) condition for KLE when applied to unsteady Stoke’s problem. The objective is to conduct a numerical analysis for stability and, hence, for convergence. Our results confirmthat the time step ∆t is constrained by the CFL-like condition ∆t ≤ const. hα, where h denotes the variable that represents spatial discretization.
Resumo:
This dissertation concerns convergence analysis for nonparametric problems in the calculus of variations and sufficient conditions for weak local minimizer of a functional for both nonparametric and parametric problems. Newton's method in infinite-dimensional space is proved to be well-defined and converges quadratically to a weak local minimizer of a functional subject to certain boundary conditions. Sufficient conditions for global converges are proposed and a well-defined algorithm based on those conditions is presented and proved to converge. Finite element discretization is employed to achieve an implementable line-search-based quasi-Newton algorithm and a proof of convergence of the discretization of the algorithm is included. This work also proposes sufficient conditions for weak local minimizer without using the language of conjugate points. The form of new conditions is consistent with the ones in finite-dimensional case. It is believed that the new form of sufficient conditions will lead to simpler approaches to verify an extremal as local minimizer for well-known problems in calculus of variations.
Resumo:
In this project, I examine current forms of scientific management systems, Lean and Six Sigma, as they relate to technical communication. With the goal of breaking work up into standardized processes in order to cut costs and increase efficiency, Lean, Six Sigma and Lean Six Sigma hybrid systems are increasingly applied beyond manufacturing operations to service and other types of organizational work, including technical communication. By consulting scholarship from fields such as business, management, and engineering, and analyzing government Lean Six Sigma documentation, I investigate how these systems influence technical communication knowledge and practice in the workplace. I draw out the consequences of system-generated power structures as they affect knowledge work, like technical communication practice, when it is reduced to process. In pointing out the problems these systems have in managing knowledge work, I also ask how technical communication might shape them.
Resumo:
Civil infrastructure provides essential services for the development of both society and economy. It is very important to manage systems efficiently to ensure sound performance. However, there are challenges in information extraction from available data, which also necessitates the establishment of methodologies and frameworks to assist stakeholders in the decision making process. This research proposes methodologies to evaluate systems performance by maximizing the use of available information, in an effort to build and maintain sustainable systems. Under the guidance of problem formulation from a holistic view proposed by Mukherjee and Muga, this research specifically investigates problem solving methods that measure and analyze metrics to support decision making. Failures are inevitable in system management. A methodology is developed to describe arrival pattern of failures in order to assist engineers in failure rescues and budget prioritization especially when funding is limited. It reveals that blockage arrivals are not totally random. Smaller meaningful subsets show good random behavior. Additional overtime failure rate is analyzed by applying existing reliability models and non-parametric approaches. A scheme is further proposed to depict rates over the lifetime of a given facility system. Further analysis of sub-data sets is also performed with the discussion of context reduction. Infrastructure condition is another important indicator of systems performance. The challenges in predicting facility condition are the transition probability estimates and model sensitivity analysis. Methods are proposed to estimate transition probabilities by investigating long term behavior of the model and the relationship between transition rates and probabilities. To integrate heterogeneities, model sensitivity is performed for the application of non-homogeneous Markov chains model. Scenarios are investigated by assuming transition probabilities follow a Weibull regressed function and fall within an interval estimate. For each scenario, multiple cases are simulated using a Monte Carlo simulation. Results show that variations on the outputs are sensitive to the probability regression. While for the interval estimate, outputs have similar variations to the inputs. Life cycle cost analysis and life cycle assessment of a sewer system are performed comparing three different pipe types, which are reinforced concrete pipe (RCP) and non-reinforced concrete pipe (NRCP), and vitrified clay pipe (VCP). Life cycle cost analysis is performed for material extraction, construction and rehabilitation phases. In the rehabilitation phase, Markov chains model is applied in the support of rehabilitation strategy. In the life cycle assessment, the Economic Input-Output Life Cycle Assessment (EIO-LCA) tools are used in estimating environmental emissions for all three phases. Emissions are then compared quantitatively among alternatives to support decision making.
Resumo:
he notion of outsourcing – making arrangements with an external entity for the provision of goods or services to supplement or replace internal efforts – has been around for centuries. The outsourcing of information systems (IS) is however a much newer concept but one which has been growing dramatically. This book attempts to synthesize what is known about IS outsourcing by dividing the subject into three interrelated parts: (1) Traditional Information Technology Outsourcing, (2) Information Technolgy Offshoring, and (3) Business Process Outsourcing. The book should be of interest to all academics and students in the field of Information Systems as well as corporate executives and professionals who seek a more profound analysis and understanding of the underlying factors and mechanisms of outsourcing.