926 resultados para tumor necrosis factor-alpha
Resumo:
Objective: Prolonged limb ischemia followed by reperfusion (I/R) is associated with a systemic inflammatory response syndrome and remote acute lung injury. Ischemic preconditioning (IPC), achieved with repeated brief periods of I/R before the prolonged ischemic period, has been shown to protect skeletal muscle against ischemic injury. The aim of this study was to ascertain whether IPC of the limb before I/R injury also attenuates systemic inflammation and acute lung injury in a fully resuscitated porcine model of hind limb I/R. Methods: This prospective, randomized, controlled, experimental animal study was performed in a university-based animal research facility with 18 male Landrace pigs that weighed from 30 to 35 kg. Anesthetized ventilated swine were randomized (n = 6 per group) to three groups: sham-operated control group, I/R group (2 hours of bilateral hind limb ischemia and 2.5 hours of reperfusion), and IPC group (three cycles of 5 minutes of ischemia/5 minutes of reperfusion immediately preceding I/R). Plasma was separated and stored at -70° C for later determination of plasma tumor necrosis factor-a and interleukin-6 with bioassay as markers of systemic inflammation. Circulating phagocytic cell priming was assessed with a whole blood chemiluminescence assay. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were markers of edema and neutrophil sequestration, respectively. The alveolar-arterial oxygen gradient and pulmonary artery pressure were indices of lung function. Results: In a porcine model, bilateral hind limb (I/R) injury significantly increased plasma interleukin-6 concentrations, circulating phagocytic cell priming, and pulmonary leukosequestration, edema, and impaired gas exchange. Conversely, pigs treated with IPC before the onset of the ischemic period had significantly reduced interleukin-6 levels, circulating phagocytic cell priming, and experienced significantly less pulmonary edema, leukosequestration, and respiratory failure. Conclusion: Lower limb IPC protects against systemic inflammation and acute lung injury in lower limb I/R injury.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently attracted attention as a potential therapeutic agent in the treatment of cancer. We assessed the roles of p53, TRAIL receptors, and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (c-FLIP) in regulating the cytotoxic effects of recombinant TRAIL (rTRAIL) alone and in combination with chemotherapy [5-fluorouracil (5-FU), oxaliplatin, and irinotecan] in a panel of colon cancer cell lines. Using clonogenic survival and flow cytometric analyses, we showed that chemotherapy sensitized p53 wild-type, mutant, and null cell lines to TRAIL-mediated apoptosis. Although chemotherapy treatment did not modulate mRNA or cell surface expression of the TRAIL receptors death receptor 4, death receptor 5, decoy receptor 1, or decoy receptor 2, it was found to down-regulate expression of the caspase-8 inhibitor, c-FLIP. Stable overexpression of the long c-FLIP splice form but not the short form was found to inhibit chemotherapy/rTRAIL-induced apoptosis. Furthermore, siRNA-mediated down-regulation of c-FLIP, particularly the long form, was found to sensitize colon cancer cells to rTRAIL-induced apoptosis. In addition, treatment of a 5-FU-resistant cell line with 5-FU down-regulated c-FLIP expression and sensitized the chemotherapy-resistant cell line to rTRAIL. We conclude that TRAIL-targeted therapies may be used to enhance conventional chemotherapy regimens in colon cancer regardless of tumor p53 status. Furthermore, inhibition of c-FLIP may be a vital accessory strategy for the optimal use of TRAIL-targeted therapies.
Resumo:
Fas (CD95/Apo-1) is a member of the tumor necrosis factor receptor family. Receptor binding results in activation of caspase 8, leading to activation of proapoptotic downstream molecules. We found that expression of Fas was up-regulated >10-fold in MCF-7 breast and HCT116 and RKO colon cancer cell lines after treatment with IC(60) doses of 5-fluorouracil (5-FU) and raltitrexed (RTX). Combined treatment with the agonistic Fas antibody CH-11 and either 5-FU or RTX resulted in a highly synergistic induction of apoptosis in these cell lines. Similar results were obtained for another antifolate, Alimta. Induction of thymidylate synthase expression inhibited Fas induction in response to RTX and Alimta, but not in response to 5-FU. Furthermore, thymidylate synthase induction abrogated the synergy between CH-11 and both antifolates but had no effect on the synergistic interaction between 5-FU and CH-11. Inactivation of p53 in MCF-7 and HCT116 cell lines blocked 5-FU- and antifolate-mediated up-regulation of Fas. Furthermore, Fas was not up-regulated in response to 5-FU or antifolates in the p53-mutant H630 colon cancer cell line. Lack of Fas up-regulation in the p53-null and -mutant lines abolished the synergistic interaction between 5-FU and CH-11. Interestingly, synergy was still observed between the antifolates and CH-11 in the p53-null HCT116 and p53-mutant H630 cell lines, although this was significantly reduced compared with the p53 wild-type cell lines. Our results indicate that Fas is an important mediator of apoptosis in response to both 5-FU and antifolates.
Resumo:
Pregnancy is characterized by a state of heightened coagulation, which is exacerbated in pathological conditions such as pre-eclampsia (PET). PET is further associated with abnormal maternal inflammation and increased circulating microparticles (MP); however, a mechanistic link between these pathological features has never been established. It is proposed in this thesis that abnormal maternal inflammation is causally linked to pro-coagulant trophoblast MP shedding via a mechanism mediated by the pro-inflammatory cytokine tumour necrosis factor alpha (TNF), thereby contributing to maternal coagulopathies associated with PET. Using thromboelastography (TEG) and standard laboratory tests, haemostatic function was evaluated in PET and normotensive subjects at delivery and post-partum. Furthermore, the effects of the menstrual cycle and oral contraceptive (OC) use on haemostatic function were assessed in non-pregnant subjects in order to understand their influence on post-partum haemostasis. Plasma TNF and pro-coagulant MP levels were evaluated in the pregnant subjects. Using chorionic villi explants from human term placentas, MPs were quantified after TNF administration. The pro-coagulant potential of placental MPs was evaluated by TEG by spiking whole-blood with medium containing MPs from chorionic villi. TEG identified increased whole-blood coagulability in PET subjects at delivery, demonstrating its increased sensitivity over standard laboratory tests at identifying haemostatic alterations associated with PET. Haemostatic alterations were normalized by six weeks post-partum. TEG also identified cyclic haemostatic variations associated with OC use. Chorionic villi treated with TNF (1 ng/ml) shed significantly more MPs than untreated placentas. MPs from chorionic villi increased the coagulability of whole-blood. Together, results provide evidence supporting the concept that abnormal maternal inflammation is causally linked to the development of maternal coagulopathies in pregnancy complications. Moreover, TEG may be superior to standard laboratory tests in evaluating haemostasis in pregnant and non-pregnant subjects.
Resumo:
Abnormal maternal inflammation during pregnancy is linked to complications such as preeclampsia and fetal growth restriction. There is growing evidence that insulin resistance is also associated with a heightened inflammatory state, and is linked to pregnancy complications such as gestational diabetes. This study tested the hypothesis that abnormal inflammation during pregnancy is causally linked to elevations in blood glucose and insulin resistance. To induce a state of abnormal systemic inflammation, bacterial lipopolysaccharide (LPS) was administered to pregnant rats on gestational days (GD) 13.5-16.5. Dams treated with LPS exhibited an abnormal immune response characterized by an elevation in white blood cells, which was linked to reduced fetal weight and increased glucose levels over pregnancy. Abnormal inflammation is characterized by increased levels of circulating pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF) and interleukin-6, which contribute to insulin resistance by inhibiting the insulin signalling pathway. TNF in particular induces a serine phosphorylation (pSer307) of insulin receptor substrate 1 (IRS-1). In our model, insulin resistance was assessed by measuring the extent of pSer307 of IRS-1 and total IRS-1 expression in skeletal muscle, as well as changes in metabolic parameters and pancreas tissue morphology associated with insulin resistance. LPS-treated dams exhibited a significant reduction in IRS-1 expression, elevation in fasting glucose levels, and reduction in insulin sensitivity indices. There were also biologically relevant increases in fasting plasma insulin levels and insulin resistance indices, but not pSer307 of IRS-1 and pancreatic islet size. To determine whether inflammation plays a role in reducing insulin signalling and the other changes associated with LPS administration, etanercept, a TNF antagonist, was administered on GDs 13.5 and 15.5 prior to LPS injections. With the exception of IRS-1 expression, in rats treated with etanercept all of the measured parameters remained at the levels observed in saline controls, indicating a link between abnormal inflammation and insulin resistance. The results of this study support the practice of monitoring the inflammatory conditions of the mother prior to and during pregnancy, and support further investigation into the potential use of anti-inflammatory agents during pregnancy in women at risk of insulin resistance and gestational diabetes.
Resumo:
Abstract
Thiazolidinediones (TZDs) have been used for the treatment of hyperglycaemia in type 2 diabetes for the past 10 years. They may delay the development of type 2 diabetes in individuals at high risk of developing the condition, and have been shown to have potentially beneficial effects on cardiovascular risk factors. TZDs act as agonists of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) primarily in adipose tissue. PPAR-gamma receptor activation by TZDs improves insulin sensitivity by promoting fatty acid uptake into adipose tissue, increasing production of adiponectin and reducing levels of inflammatory mediators such as tumour necrosis factor-alpha (TNF-alpha), plasminogen activator inhibitor-1(PAI-1) and interleukin-6 (IL-6). Clinically, TZDs have been shown to reduce measures of atherosclerosis such as carotid intima-media thickness (CIMT). However, in spite of beneficial effects on markers of cardiovascular risk, TZDs have not been definitively shown to reduce cardiovascular events in patients, and the safety of rosiglitazone in this respect has recently been called into question. Dual PPAR-alpha/gamma agonists may offer superior treatment of insulin resistance and cardioprotection, but their safety has not yet been assured
Resumo:
Chemotherapy-induced interleukin-8 (IL-8) signaling reduces the sensitivity of prostate cancer cells to undergo apoptosis. In this study, we investigated how endogenous and drug-induced IL-8 signaling altered the extrinsic apoptosis pathway by determining the sensitivity of LNCaP and PC3 cells to administration of the death receptor agonist tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL induced concentration-dependent decreases in LNCaP and PC3 cell viability, coincident with increased levels of apoptosis and the potentiation of IL-8 secretion. Administration of recombinant human IL-8 was shown to increase the mRNA transcript levels and expression of c+FLIPL and c-FLIPS, two isoforms of the endogenous caspase-8 inhibitor. Pretreatment with the CXCR2 antagonist AZ10397767 significantly attenuated IL-8-induced c-FLIP mRNA up-regulation whereas inhibition of androgen receptor- and/or nuclear factor-kappa B-mediated transcription attenuated IL-8-induced c-FLIP expression in LNCaP and PC3 cells, respectively. Inhibition of c-FLIP expression was shown to induce spontaneous apoptosis in both cell lines and to sensitize these prostate cancer cells to treatment with TRAIL, oxaliplatin, and docetaxel. Coadministration of AZ10397767 also increased the sensitivity of PC3 cells to the apoptosis-inducing effects of recombinant TRAIL, most likely due to the ability of this antagonist to block TRAIL- and IL-8-induced up-regulation of c-FLIP in these cells. We conclude that endogenous and TRAIL-induced IL-8 signaling can modulate the extrinsic apoptosis pathway in prostate cancer cells through direct transcriptional regulation of c-FLIP. Therefore, targeted inhibition of IL-8 signaling or c-FLIP expression in prostate cancer may be an attractive therapeutic strategy to sensitize this stage of disease to chemotherapy.
Resumo:
Death receptors can directly (type I cells) or indirectly induce apoptosis by activating mitochondrial-regulated apoptosis (type II cells). The level of caspase 8 activation is thought to determine whether a cell is type I or II, with type II cells less efficient at activating this caspase following death receptor activation. FLICE-inhibitory protein (FLIP) blocks death receptor-mediated apoptosis by inhibiting caspase 8 activation; therefore, we assessed whether silencing FLIP could convert type II cells into type I. FLIP silencing-induced caspase 8 activation in Bax wild-type and null HCT116 colorectal cancer cells; however, complete caspase 3 processing and apoptosis were only observed in Bax wild-type cells. Bax-null cells were also more resistant to chemotherapy and tumor necrosis factor-related apoptosis inducing ligand and, unlike the Bax wild-type cells, were not sensitized to these agents by FLIP silencing. Further analyses indicated that release of second mitochondrial activator of caspases from mitochondria and subsequent inhibition of X-linked inhibitor of apoptosis protein (XIAP) was required to induce full caspase 3 processing and apoptosis following FLIP silencing. These results indicate that silencing FLIP does not necessarily bypass the requirement for mitochondrial involvement in type II cells. Furthermore, targeting FLIP and XIAP may represent a therapeutic strategy for the treatment of colorectal tumors with defects in mitochondrial-regulated apoptosis.
Resumo:
PURPOSE: We describe key components of normal and aberrant death receptor pathways, the association of these abnormalities with tumorigenesis in bladder, prostate and renal cancer, and their potential application in novel therapeutic strategies targeted toward patients with cancer.
MATERIALS AND METHODS: A MEDLINE literature search of the key words death receptors, TRAIL (tumor necrosis factor related apoptosis inducing ligand), FAS, bladder, prostate, renal and cancer was done to obtain information for review. A brief overview of the TRAIL and FAS death receptor pathways, and their relationship to apoptosis is described. Mechanisms that lead to nonfunction of these pathways and how they may contribute to tumorigenesis are linked. Current efforts to target death receptor pathways as a therapeutic strategy are highlighted.
RESULTS: Activation of tumor cell expressing death receptors by cytotoxic immune cells is the main mechanism by which the immune system eliminates malignant cells. Death receptor triggering induces a caspase cascade, leading to tumor cell apoptosis. Receptor gene mutation or hypermethylation, decoy receptor or splice variant over expression, and downstream inhibitor interference are examples of the ways that normal pathway functioning is lost in cancers of the bladder and prostate. Targeting death receptors directly through synthetic ligand administration and blocking downstream inhibitor molecules with siRNA or antisense oligonucleotides represent novel therapeutic strategies under development.
CONCLUSIONS: Research into the death receptor pathways has demonstrated the key role that pathway aberrations have in the initiation and progression of malignancies of the bladder, prostate and kidney. This new understanding has resulted in exciting approaches to restore the functionality of these pathways as a novel therapeutic strategy.
Cytopathogenesis of Sendai virus in well-differentiated primary pediatric bronchial epithelial cells
Resumo:
Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.
Resumo:
The effects of polyunsaturated n-6 linoleic acid on monocyte-endothelial interactions were investigated with particular emphasis on the expression of platelet/endothelial cell adhesion molecule (PECAM)-1 and the role of protein kinase C (PKC) and cyclooxygenase-2 (COX-2). As a diet rich in polyunsaturated fatty acids may favour atherosclerosis in hyperglycaemia, this study was performed in both normal and high-glucose media using human aortic endothelial cells (HAEC). The HAEC were preincubated with normal (5 mM) or high (25 mM) d-glucose for 3 days before addition of fatty acids (0.2 mM) for 3 days. Linoleic acid enhanced PECAM-1 expression independently of tumor necrosis factor (TNF)-a and significantly increased TNF-a-induced monocyte adhesion to HAEC in comparison to the monounsaturated n-9 oleic acid. Chronic glucose treatment (25 mM, 6 days) did not modify the TNF-a-induced or fatty acid-induced changes in monocyte binding. The increase in monocyte binding was accompanied by a significant increase in E-selectin and vascular cell adhesion molecule (VCAM)-1 expression and could be abrogated by an interleukin (IL)-8 neutralising antibody and by the PKC and COX inhibitors. Inhibition of PKC-d reduced VCAM-1 expression regardless of experimental condition and was accompanied by a significant decrease in monocyte binding. Conditioned medium from linoleic acid-treated HAEC grown in normal glucose conditions significantly increased THP-1 chemotaxis. These results suggest that linoleic acid-induced changes in monocyte chemotaxis and subsequent binding are not solely mediated by changes in adhesion molecule expression but may be due to secreted factors such as IL-8, monocyte chemoattractant protein-1 or prostaglandins (PGs) such as PGE2, as IL-8 neutralisation and COX-2 inhibition reduced monocyte binding without changes in adhesion molecule expression.
Resumo:
Cardiac surgery modulates pro- and anti-inflammatory cytokine balance involving plasma tumour necrosis factor alpha (TNFa) and interleukin-10 (IL-10) together with urinary transforming growth factor beta-1 (TGFß1), interleukin-1 receptor antagonist (IL1ra) and tumour necrosis factor soluble receptor-2 (TNFsr2). Effects on post-operative renal function are unclear. We investigated if following cardiac surgery there is a relationship between cytokine (a) phenotype and renal outcome; (b) genotype and phenotype and (c) genotype and renal outcome. Since angiotensin-2 (AG2), modulates TGFß1 production, we determined whether angiotensin converting enzyme insertion/deletion (ACE I/D) genotype affects urinary TGFß1 phenotype as well as renal outcome.
Resumo:
Background and Aim: Inflammatory bowel diseases (IBD) are immune-mediated chronic diseases that are characterized by an overreaction of the intestinal immune system to the intestinal microbiota. VSL#3, a mixture of 8 different lactic acid bacteria, is a clinically relevant probiotic compound in the context of IBD, but the bacterial structures and molecular mechanisms underlying the observed protective effects are largely unknown. The intestinal epithelium plays a very important role in the maintenance of the intestinal homeostasis, as the intestinal epithelial cells (IEC) are capable of sensing, processing, and reacting upon signals from the luminal microbiota and the intestinal immune system. This immune regulatory function of the IEC is lost in IBD owing to dysregulated activation of the IEC. Thus, the aim of this study was to reveal protective mechanisms of VSL#3 on IEC function.
Results: In vitro, VSL#3 was found to selectively inhibit activation-induced secretion of the T-cell chemokine interferon-inducible protein (IP)-10 in IEC. Cell wall-associated proteins of VSL#3-derived Lactobacillus casei (L. casei) were identified to be the active anti-inflammatory component of VSL#3. Mechanistically, L. casei did not impair initial IP-10 protein production, but induced posttranslational degradation of IP-10 in IEC. Feeding studies in tumor necrosis factor (TNF)(Delta ARE/+) mice, a mouse model for experimental ileitis, revealed that neither VSL#3 nor L. casei is capable of reducing ileal inflammation. Even preweaning feeding of VSL#3 did not prevent the development of severe ileitis in TNF Delta ARE/+ mice. In contrast, VSL#3 feeding studies in IL-10-/- mice, a model for experimental colitis, revealed that VSL#3 has local, intestinal compartment-specific protective effects on the development of inflammation. Reduced histopathologic inflammation in the cecum of IL-10-/- mice after VSL#3 treatment was found to correlate with reduced levels of IP-10 protein in primary cecal epithelial cells.
Conclusion and Outlook: These results suggest that the inhibitory effect of VSL#3-derived L. casei on IP-10 secretion in IEC is an important probiotic mechanism that contributes to the anti-inflammatory effects of VSL#3 in specific subsets of patients with IBD. An important future aim is the identification of the active probiotic protein, which could serve as a basis for the development of new efficient therapies in the context of IBD.
Resumo:
Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.
Resumo:
Background: Differentiation between septic and aseptic loosening of joint replacements is essential for successful revision surgery, but reliable markers for the diagnosis of low-grade infection are lacking. The present study was performed to assess intra-articular and systemic levels of antimicrobial peptides and proinflammatory cytokines as diagnostic markers for periprosthetic joint infection. Methods: Fifteen consecutive patients with staphylococcal periprosthetic joint infections and twenty control patients with aseptic loosening of total hip and knee replacements were included in this prospective, single-center, controlled clinical trial. Expression of the antimicrobial peptides human β-defensin-2 (HBD-2), human β-defensin-3 (HBD-3), and cathelicidin LL-37 (LL-37) was determined by ELISA (enzyme-linked immunosorbent assay) in serum and joint aspirates. Proinflammatory cytokines were assessed in serum and joint aspirates with use of cytometric bead arrays. C-reactive protein in serum, microbiology, and histopathology of periprosthetic tissue served as the “gold standard” for the diagnosis of infection. Results: The antimicrobial peptides HBD-3 and LL-37 were significantly elevated in joint aspirates from patients with periprosthetic joint infection compared with patients with aseptic loosening, and the area under the curve (AUC) in a receiver operating characteristic curve analysis was equal to 0.745 and 0.875, respectively. Additionally, significant local increases in the proinflammatory cytokines interleukin (IL)-1β, IL-4, IL-6, IL-17A, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α were observed to be associated with infection. Logistic regression analysis indicated that the combination of an antimicrobial peptide with another synovial fluid biomarker improved diagnostic accuracy; the AUC value was 0.916 for LL-37 and IL-4, 0.895 for LL-37 and IL-6, 0.972 for HBD-3 and IL-4, and 0.849 for HBD-3 and IL-6. In contrast, the only antimicrobial peptides and cytokines in serum that showed a significant systemic increase in association with infection were HBD-2, IL-4, and IL-6 (all of which had an AUC value of <0.75). Conclusions: The present study showed promising results for the use of antimicrobial peptides and other biomarkers in synovial fluid for the diagnosis of periprosthetic joint infection, and analysis of the levels in synovial fluid was more accurate than analysis of serum.