965 resultados para tumor necrosis factor related apoptosis inducing ligand receptor
Resumo:
We reported previously that infection of C3H/HeOuJ (HeOu) mice with the murine intestinal pathogen Citrobacter rodentium caused a selective modulation of hepatic cytochrome P450 (P450) gene expression in the liver that was independent of the Toll-like receptor 4. However, HeOu mice are much more sensitive to the pathogenic effects of C. rodentium infection, and the P450 down-regulation was associated with significant morbidity in the animals. Here, we report that oral infection of C57BL/6 mice with C. rodentium, which produced only mild clinical signs and symptoms, produced very similar effects on hepatic P450 expression in this strain. As in HeOu mice, CYP4A mRNAs and proteins were among the most sensitive to down-regulation, whereas CYP4F18 was induced. CYP2D9 mRNA was also induced 8- to 9-fold in the C57BL/6 mice. The time course of P450 regulation followed that of colonic inflammation and bacterial colonization, peaking at 7 to 10 days after infection and returning to normal at 15 to 24 days as the infection resolved. These changes also correlated with the time course of significant elevations in the serum of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor-alpha, as well as of interferon-gamma and IL-2, with serum levels of IL-6 being markedly higher than those of the other cytokines. Intraperitoneal administration of C. rodentium produced a rapid down-regulation of P450 enzymes that was quantitatively and qualitatively different from that of oral infection, although CYP2D9 was induced in both models, suggesting that the effects of oral infection on the liver are not due to bacterial translocation.
Resumo:
After an inflammatory stimulus, lymphocyte migration into draining lymph nodes increases dramatically to facilitate the encounter of naive T cells with Ag-loaded dendritic cells. In this study, we show that CD73 (ecto-5'-nucleotidase) plays an important role in regulating this process. CD73 produces adenosine from AMP and is expressed on high endothelial venules (HEV) and subsets of lymphocytes. Cd73(-/-) mice have normal sized lymphoid organs in the steady state, but approximately 1.5-fold larger draining lymph nodes and 2.5-fold increased rates of L-selectin-dependent lymphocyte migration from the blood through HEV compared with wild-type mice 24 h after LPS administration. Migration rates of cd73(+/+) and cd73(-/-) lymphocytes into lymph nodes of wild-type mice are equal, suggesting that it is CD73 on HEV that regulates lymphocyte migration into draining lymph nodes. The A(2B) receptor is a likely target of CD73-generated adenosine, because it is the only adenosine receptor expressed on the HEV-like cell line KOP2.16 and it is up-regulated by TNF-alpha. Furthermore, increased lymphocyte migration into draining lymph nodes of cd73(-/-) mice is largely normalized by pretreatment with the selective A(2B) receptor agonist BAY 60-6583. Adenosine receptor signaling to restrict lymphocyte migration across HEV may be an important mechanism to control the magnitude of an inflammatory response.
Resumo:
Atherosclerosis is a chronic, complex arterial disease characterized by intimal lipid accumulation and inflammation. A unique lipid-binding molecule, namely cluster of differentiation 1d (CD1d), may impact atherosclerosis. Structurally, CD1d acts as a nonpolymorphic cell-surface receptor, resembling the major histocompatibility complex-I (MHC-I). While MHC-I restricts peptide antigen presentation to T cells, CD1d presents lipid antigens to T cells named CD1d-restrictedd T cells. Although increased expression of CD1d has been found in human plaques, the exact nature of CD1d-recognized lipids in atherosclerosis remains to be determined. Three groups of lipids may undergo oxidation in atherosclerosis producing atherogenic lipids: phospholipids, fatty acids, and cholesterol. The central hypothesis is that CD1d recognizes and present oxidative lipids to activate CD1d-restricted T cells, and trigger proinflammatory signal transduction In the first part of this study, oxidative phospholipids were identified and characterized as potential autoantigen for CD1d-restricted T cells. Derived from phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine by oxidization, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) is commonly found in atherosclerotic plaques. Upon stimulation with PGPC, spleen-derived CD1d-restricted T cells produced higher levels of cytokines and proliferated at higher rates than those without PGPC stimulation. CD1d deficiency compromised the PGPC-triggered T cell activation, suggesting that PGPC may function as a potentially novel autoantigen for T cells in atherosclerosis. In the second part of this study, CD1d-mediated proinflammatory signaling was evaluated in murine models. Enhanced CD1 expression occurred in spleens of db/db mice with hyperlipidemia. Tumor necrosis factor-alpha (TNF-α) was increased in db/db spleen, while TNF-α receptor expression augmented in the db/db murine heart, in comparison with those in normal mice. The nuclear factor-κ B (NF-κB) expression was enhanced in the db/db heart, whereas CD1d-null mice showed lower NF-κB, implying the involvement of CD1d in inflammation of the spleen and heart tissues in the mice with hyperlipidemia. The current study has identified PGPC as a novel lipid antigen recognized by CD1d-restricted T cells in atherosclerosis. The animal study has also provided evidence that CD1d regulates NF-κB-mediated proinflammatory signaling. Hence, CD1d-restricted T cell responses to autolipid antigen and mediated inflammatory signal may represent a new molecular pathway that triggers cardiovascular tissue injury in atherosclerosis and hyperlipidemia.
Resumo:
Tumor necrosis factor (TNF) is known to have antiproliferative effects on a wide variety of tumor cells but proliferative effects on normal cells. However, the molecular basis for such differences in the action of TNF are unknown. The overall objectives of my research are to investigate the role of oncogenes in TNF sensitivity and delineate some of the molecular mechanisms involved in TNF sensitivity and resistance. To accomplish these objectives, I transfected TNF-resistant C3H mouse embryo fibroblasts (10T1/2) with an activated Ha-ras oncogene and determined whether these cells exhibit altered sensitivity to TNF. The results indicated that 10T1/2 cells transfected with an activated Ha-ras oncogene (10T-EJ) not only produced tumors in nude mice but also exhibited extreme sensitivity to cytolysis by TNF. In contrast, 10T1/2 cells transfected with the pSV2-neo gene alone were resistant to the cytotoxic effects of TNF. I also found that TNF-induced cell death was mediated through apoptosis. The differential sensitivity of 10T1/2 and 10T-EJ cell lines to TNF was not due to differences in the number of TNF receptors on their cell surface. In addition, TNF-resistant revertants isolated from Ha-ras-transformed, TNF-sensitive cells still expressed the same amount of p21 as TNF-sensitive cells and were still tumorigenic, suggesting that Ha-ras-induced transformation and TNF sensitivity may follow different pathways. Interestingly, TNF-resistant but not sensitive cells expressed higher levels of bcl-2, c-myc, and manganese superoxide dismutase (MnSOD) mRNA following exposure to TNF. However, TNF treatment resulted in a marginal induction of p53 mRNA in both TNF-sensitive and resistant cells. Based on these results I can conclude that (i) Ha-ras oncogene induces both transformation and TNF sensitivity, (ii) TNF-induced cytotoxicity involves apoptosis, and (iii) TNF-induced upregulation of bcl-2, c-myc, and MnSOD genes is associated with TNF resistance in C3H mouse embryo fibroblasts. ^
Resumo:
Pneumococcal meningitis (PM) results in high mortality rates and long-lasting neurological deficits. Hippocampal apoptosis and cortical necrosis are histopathological correlates of neurofunctional sequelae in rodent models and are frequently observed in autopsy studies of patients who die of PM. In experimental PM, inhibition of matrix metalloproteinases (MMPs) and/or tumor necrosis factor (TNF)-converting enzyme (TACE) has been shown to reduce brain injury and the associated impairment of neurocognitive function. However, none of the compounds evaluated in these studies entered clinical development. Here, we evaluated two second-generation MMP and TACE inhibitors with higher selectivity and improved oral availability. Ro 32-3555 (Trocade, cipemastat) preferentially inhibits collagenases (MMP-1, -8, and -13) and gelatinase B (MMP-9), while Ro 32-7315 is an efficient inhibitor of TACE. PM was induced in infant rats by the intracisternal injection of live Streptococcus pneumoniae. Ro 32-3555 and Ro 32-7315 were injected intraperitoneally, starting at 3 h postinfection. Antibiotic (ceftriaxone) therapy was initiated at 18 h postinfection, and clinical parameters (weight, clinical score, mortality rate) were recorded. Myeloperoxidase activities, concentrations of cytokines and chemokines, concentrations of MMP-2 and MMP-9, and collagen concentrations were measured in the cerebrospinal fluid. Animals were sacrificed at 42 h postinfection, and their brains were assessed by histomorphometry for hippocampal apoptosis and cortical necrosis. Both compounds, while exhibiting disparate MMP and TACE inhibitory profiles, decreased hippocampal apoptosis and cortical injury. Ro 32-3555 reduced mortality rates and cerebrospinal fluid TNF, interleukin-1β (IL-1β) and collagen levels, while Ro 32-7315 reduced weight loss and cerebrospinal fluid TNF and IL-6 levels.
Resumo:
The loci of the porcine tumour necrosis factor genes, alpha (TNFA) and beta (TNFB), have been chromosomally assigned by radioactive in situ hybridization. The genomic probes for TNFA and TNFB yielded signals above 7p11-q11, a region that has been shown earlier to carry the porcine major histocompatibility locus (SLA). These mapping data along with preliminary molecular studies suggest a genomic organization of the SLA that is similar to that of human and murine major histocompatibility complexes.
Resumo:
BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.
Resumo:
Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.
Resumo:
INTRODUCTION Significant pulmonary vascular disease is a leading cause of death in patients with scleroderma, and early detection and early medical intervention are important, as they may delay disease progression and improve survival and quality of life. Although several biomarkers have been proposed, there remains a need to define a reliable biomarker of early pulmonary vascular disease and subsequent development of pulmonary hypertension (PH). The purpose of this study was to define potential biomarkers for clinically significant pulmonary vascular disease in patients with scleroderma. METHODS The circulating growth factors basic fibroblast growth factor, placental growth factor (PlGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor, and soluble VEGF receptor 1 (sFlt-1), as well as cytokines (interleukin [IL]-1β IL-2, IL-4, IL-5, IL-8, IL-10, IL-12, IL-13, tumor necrosis factor-α, and interferon-γ), were quantified in patients with scleroderma with PH (n = 37) or without PH (n = 40). In non-parametric unadjusted analyses, we examined associations of growth factor and cytokine levels with PH. In a subset of each group, a second set of earlier samples, drawn 3.0±1.6 years earlier, were assessed to determine the changes over time. RESULTS sFlt-1 (p = 0.02) and PlGF (p = 0.02) were higher in the PH than in the non-PH group. sFlt-1 (ρ = 0.3245; p = 0.01) positively correlated with right ventricular systolic pressure. Both PlGF (p = 0.03) and sFlt-1 (p = 0.04) positively correlated with the ratio of forced vital capacity to diffusing capacity for carbon monoxide (DLCO), and both inversely correlated with DLCO (p = 0.01). Both PlGF and sFlt-1 levels were stable over time in the control population. CONCLUSIONS Our study demonstrated clear associations between regulators of angiogenesis (sFlt-1 and PlGF) and measures of PH in scleroderma and that these growth factors are potential biomarkers for PH in patients with scleroderma. Larger longitudinal studies are required for validation of our results.
Resumo:
Early initiation of everolimus with calcineurin inhibitor therapy has been shown to reduce the progression of cardiac allograft vasculopathy (CAV) in de novo heart transplant recipients. The effect of de novo everolimus therapy and early total elimination of calcineurin inhibitor therapy has, however, not been investigated and is relevant given the morbidity and lack of efficacy of current protocols in preventing CAV. This 12-month multicenter Scandinavian trial randomized 115 de novo heart transplant recipients to everolimus with complete calcineurin inhibitor elimination 7-11 weeks after HTx or standard cyclosporine immunosuppression. Ninety-five (83%) patients had matched intravascular ultrasound examinations at baseline and 12 months. Mean (± SD) recipient age was 49.9 ± 13.1 years. The everolimus group (n = 47) demonstrated significantly reduced CAV progression as compared to the calcineurin inhibitor group (n = 48) (ΔMaximal Intimal Thickness 0.03 ± 0.06 and 0.08 ± 0.12 mm, ΔPercent Atheroma Volume 1.3 ± 2.3 and 4.2 ± 5.0%, ΔTotal Atheroma Volume 1.1 ± 19.2 mm(3) and 13.8 ± 28.0 mm(3) [all p-values ≤ 0.01]). Everolimus patients also had a significantly greater decline in levels of soluble tumor necrosis factor receptor-1 as compared to the calcineurin inhibitor group (p = 0.02). These preliminary results suggest that an everolimus-based CNI-free can potentially be considered in suitable de novo HTx recipients.
Resumo:
BACKGROUND Anxiety disorders have been linked to an increased risk of incident coronary heart disease in which inflammation plays a key pathogenic role. To date, no studies have looked at the association between proinflammatory markers and agoraphobia. METHODS In a random Swiss population sample of 2890 persons (35-67 years, 53% women), we diagnosed a total of 124 individuals (4.3%) with agoraphobia using a validated semi-structured psychiatric interview. We also assessed socioeconomic status, traditional cardiovascular risk factors (i.e., body mass index, hypertension, blood glucose levels, total cholesterol/high-density lipoprotein-cholesterol ratio), and health behaviors (i.e., smoking, alcohol consumption, and physical activity), and other major psychiatric diseases (other anxiety disorders, major depressive disorder, drug dependence) which were treated as covariates in linear regression models. Circulating levels of inflammatory markers, statistically controlled for the baseline demographic and health-related measures, were determined at a mean follow-up of 5.5 ± 0.4 years (range 4.7 - 8.5). RESULTS Individuals with agoraphobia had significantly higher follow-up levels of C-reactive protein (p = 0.007) and tumor-necrosis-factor-α (p = 0.042) as well as lower levels of the cardioprotective marker adiponectin (p = 0.032) than their non-agoraphobic counterparts. Follow-up levels of interleukin (IL)-1β and IL-6 did not significantly differ between the two groups. CONCLUSIONS Our results suggest an increase in chronic low-grade inflammation in agoraphobia over time. Such a mechanism might link agoraphobia with an increased risk of atherosclerosis and coronary heart disease, and needs to be tested in longitudinal studies.
Resumo:
In chronic myelogenous leukemia (CML), oncogenic BCR-ABL1 activates the Wnt pathway, which is fundamental for leukemia stem cell (LSC) maintenance. Tyrosine kinase inhibitor (TKI) treatment reduces Wnt signaling in LSCs and often results in molecular remission of CML; however, LSCs persist long term despite BCR-ABL1 inhibition, ultimately causing disease relapse. We demonstrate that TKIs induce the expression of the tumor necrosis factor (TNF) family ligand CD70 in LSCs by down-regulating microRNA-29, resulting in reduced CD70 promoter DNA methylation and up-regulation of the transcription factor specificity protein 1. The resulting increase in CD70 triggered CD27 signaling and compensatory Wnt pathway activation. Combining TKIs with CD70 blockade effectively eliminated human CD34(+) CML stem/progenitor cells in xenografts and LSCs in a murine CML model. Therefore, targeting TKI-induced expression of CD70 and compensatory Wnt signaling resulting from the CD70/CD27 interaction is a promising approach to overcoming treatment resistance in CML LSCs.
Resumo:
UNLABELLED Patients carrying very rare loss-of-function mutations in interleukin-1 receptor-associated kinase 4 (IRAK4), a critical signaling mediator in Toll-like receptor signaling, are severely immunodeficient, highlighting the paramount role of IRAK kinases in innate immunity. We discovered a comparatively frequent coding variant of the enigmatic human IRAK2, L392V (rs3844283), which is found homozygously in ∼15% of Caucasians, to be associated with a reduced ability to induce interferon-alpha in primary human plasmacytoid dendritic cells in response to hepatitis C virus (HCV). Cytokine production in response to purified Toll-like receptor agonists was also impaired. Additionally, rs3844283 was epidemiologically associated with a chronic course of HCV infection in two independent HCV cohorts and emerged as an independent predictor of chronic HCV disease. Mechanistically, IRAK2 L392V showed intact binding to, but impaired ubiquitination of, tumor necrosis factor receptor-associated factor 6, a vital step in signal transduction. CONCLUSION Our study highlights IRAK2 and its genetic variants as critical factors and potentially novel biomarkers for human antiviral innate immunity.
Resumo:
BACKGROUND During pregnancy, many patients with rheumatoid arthritis (RA) experience disease improvement, whereas patients with ankylosing spondylitis often suffer from persistent active disease. Here we investigated whether pregnancy-related changes in disease activity were associated with changes in the proportion and function of γδT cells. METHODS The study population comprised 55 patients with RA, 31 patients with ankylosing spondylitis, and 35 healthy controls. Among these participants, 28 RA patients, 21 ankylosing spondylitis patients, and 23 healthy controls were investigated once before conception when possible, at each trimester of pregnancy, and at 8 weeks postpartum. Data were compared with age-matched non-pregnant patients to obtain disease-related background. In all subjects, peripheral Vδ1 and Vδ2 T cells were analyzed for cell frequencies, the activation marker CD69, the cytotoxicity markers NKG2D and NKG2A, and the intracellular cytokines tumor necrosis factor (TNF)α, interferon (IFN)γ, interleukin (IL)-17 and IL-10. RESULTS Pregnant patients showed a decreased Vδ2/Vδ1 ratio in the third trimester, which resulted from a slightly reduced proportion of Vδ2 cells. Changes in RA disease activity during pregnancy and postpartum were not associated with numerical proportions of γδT cells but with changes of the cell activation marker CD69 on Vδ1 and Vδ2 cells. Only RA patients showed reduced proportions of TNFα-positive Vδ1and Vδ2 cells and IFNγ-positive Vδ2 cells at the third trimester of pregnancy, a finding that was not apparent in the entire population of CD3 T cells. The proportions of IL-17-positive γδT cells and IL-10-positive γδT cells did not differ between pregnant and non-pregnant women of the different groups. CONCLUSIONS Changes of disease activity in pregnant RA patients were associated with functional changes in both γδT cell subsets. This reduced pro-inflammatory profile of γδT cells might contribute to the immunomodulation resulting in pregnancy-induced improvement of RA.
Resumo:
OBJECTIVE AND DESIGN A systematic review of all literature was done to assess the ability of the progestin dienogest (DNG) to influence the inflammatory response of endometriotic cells. MAIN OUTCOME MEASURES In vitro and in vivo studies report an influence of DNG on the inflammatory response in eutopic or ectopic endometrial tissue (animal or human). RESULTS After strict inclusion criteria were satisfied, 15 studies were identified that reported a DNG influence on the inflammatory response in endometrial tissue. These studies identified a modulation of prostaglandin (PG) production and metabolism (PGE2, PGE2 synthase, cyclo-oxygenase-2 and microsomal PGE synthase-1), pro-inflammatory cytokine and chemokine production [interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, monocyte chemoattractant protein-1 and stromal cell-derived factor-1], growth factor biosynthesis (vascular endothelial growth factor and nerve growth factor) and signaling kinases, responsible for the control of inflammation. Evidence supports a progesterone receptor-mediated inhibition of the inflammatory response in PR-expressing epithelial cells. It also indicated that DNG inhibited the inflammatory response in stromal cells, however, whether this was via a PR-mediated mechanism is not clear. CONCLUSIONS DNG has a significant effect on the inflammatory microenvironment of endometriotic lesions that may contribute to its clinical efficacy. A better understanding of the specific anti-inflammatory activity of DNG and whether this contributes to its clinical efficacy can help develop treatments that focus on the inhibition of inflammation while minimizing hormonal modulation.