954 resultados para transmission-blocking vaccines
Resumo:
It is argued that the essential aspect of atmospheric blocking may be seen in the wave breaking of potential temperature (θ) on a potential vorticity (PV) surface, which may be identified with the tropopause, and the consequent reversal of the usual meridional temperature gradient of θ. A new dynamical blocking index is constructed using a meridional θ difference on a PV surface. Unlike in previous studies, the central blocking latitude about which this difference is constructed is allowed to vary with longitude. At each longitude it is determined by the latitude at which the climatological high-pass transient eddy kinetic energy is a maximum. Based on the blocking index, at each longitude local instantaneous blocking, large-scale blocking, and blocking episodes are defined. For longitudinal sectors, sector blocking and sector blocking episodes are also defined. The 5-yr annual climatologies of the three longitudinally defined blocking event frequencies and the seasonal climatologies of blocking episode frequency are shown. The climatologies all pick out the eastern North Atlantic–Europe and eastern North Pacific–western North America regions. There is evidence that Pacific blocking shifts into the western central Pacific in the summer. Sector blocking episodes of 4 days or more are shown to exhibit different persistence characteristics to shorter events, showing that blocking is not just the long timescale tail end of a distribution. The PV–θ index results for the annual average location of Pacific blocking agree with synoptic studies but disagree with modern quantitative height field–based studies. It is considered that the index used here is to be preferred anyway because of its dynamical basis. However, the longitudinal discrepancy is found to be associated with the use in the height field index studies of a central blocking latitude that is independent of longitude. In particular, the use in the North Pacific of a latitude that is suitable for the eastern North Atlantic leads to spurious categorization of blocking there. Furthermore, the PV–θ index is better able to detect Ω blocking than conventional height field indices.
Resumo:
There is widely believed to be a link between stratospheric flow variability and stationary, persistent “blocking” weather systems, but the precise nature of this link has proved elusive. Using data from the ERA-40 Reanalysis and an atmospheric general circulation model (GCM) with a well-resolved stratosphere (HadGAM), it is shown that there are in fact several different highly significant associations, with blocking in different regions being related to different patterns of stratospheric variability. This is true in both hemispheres and in both data sets. The associations in HadGAM are shown to be very similar to those in ERA-40, although the model has a tendency to underestimate both European blocking and the wave number 2 stratospheric variability to which this is related. Although the focus is on stratospheric variability in general, several of the blocking links are seen to occur in association with the major stratospheric sudden warmings. In general, the direction of influence appears to be upward, as blocking anomalies are shown to modify the planetary stationary waves, leading to an upward propagation of wave activity into the stratosphere. However, significant correlations are also apparent with the zonal mean flow in the stratosphere leading the occurrence of blocking at high latitudes. Finally, the underestimation of blocking is an enduring problem in GCMs, and an example has recently been given in which improving the resolution of the stratosphere improved the representation of blocking. Here, however, another example is given, in which increasing the stratospheric resolution unfortunately does not lead to an improvement in blocking.
Resumo:
Many pathogens transmit to new hosts by both infection (horizontal transmission) and transfer to the infected host's offspring (vertical transmission). These two transmission modes require speci®c adap- tations of the pathogen that can be mutually exclusive, resulting in a trade-off between horizontal and vertical transmission. We show that in mathematical models such trade-offs can lead to the simultaneous existence of two evolutionary stable states (evolutionary bi-stability) of allocation of resources to the two modes of transmission. We also show that jumping between evolutionary stable states can be induced by gradual environmental changes. Using quantitative PCR-based estimates of abundance in seed and vege- tative parts, we show that the pathogen of wheat, Phaeosphaeria nodorum, has jumped between two distinct states of transmission mode twice in the past 160 years, which, based on published evidence, we interpret as adaptation to environmental change. The ®nding of evolutionary bi-stability has impli- cations for human, animal and other plant diseases. An ill-judged change in a disease control programme could cause the pathogen to evolve a new, and possibly more damaging, combination of transmission modes. Similarly, environmental changes can shift the balance between transmission modes, with adverse effects on human, animal and plant health.
Resumo:
Recent studies into price transmission have recognized the important role played by transport and transaction costs. Threshold models are one approach to accommodate such costs. We develop a generalized Threshold Error Correction Model to test for the presence and form of threshold behavior in price transmission that is symmetric around equilibrium. We use monthly wheat, maize, and soya prices from the United States, Argentina, and Brazil to demonstrate this model. Classical estimation of these generalized models can present challenges but Bayesian techniques avoid many of these problems. Evidence for thresholds is found in three of the five commodity price pairs investigated.
Resumo:
Transmission properties of Iranian wheat stripe virus (IWSV), a tentative member of the genus Tenuivirus, were studied. Results showed that similar to other tenuiviruses, IWSV multiplies in its vector, Unkanodes tanasijevici. In bioassay experiments, IWSV transmission rate by individual U. tanasijevici showed an increase with time after acquisition. IWSV was transovarially transmitted to 88-100% of progeny. The nymphs continued to be infective in the adult stage but with decreased efficiency. Males and females transmitted the virus with equal efficiency. Transmission properties of IWSV confirm the position of the virus in the genus Tenuivirus.
Resumo:
A study was undertaken to determine whether cocoa swollen shoot virus is transmitted by seeds, to improve the robustness of quarantine procedures for international exchange and long term conservation of cocoa germplasm. PCR/capillary electrophoresis, using cocoa swollen shoot virus primers designed from the most conserved regions of the six published cocoa genome sequences, allowed the detection of cocoa swollen shoot virus in all the component parts of cocoa seeds from cocoa swollen shoot virus-infected trees. PCR/capillary electrophoresis revealed the presence of cocoa swollen shoot virus in seedlings raised from seeds obtained from cocoa swollen shoot virus-infected trees. The high frequency with which the virus was transmitted through the seedlings suggested that cocoa swollen shoot virus is transmitted by seeds. This has serious implications for cocoa germplasm conservation and distribution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Studies in polytunnels were conducted to investigate the effects of ultraviolet (UV)-blocking films on naturally occurring insect pests and their arthropod natural enemies on a cucumber crop. Within tunnels clad with Antibotrytis (blocks light < 400 nm) and UVI/EVA (UV transmitting), 5.8 and 23.4 times more aphids, respectively, were recorded on traps compared with those on traps within tunnels clad with XL 385 (blocks light < 385 nm). When all plants within the UVI/EVA tunnels had become heavily infested with aphids, half of the plants in XL 385 tunnels were uninfested. More Coleoptera and thrips (approximately two times) were recorded under the UVI/EVA film than under the UV-blocking films, but for other arthropod pests (e. g. whitefly, leafhoppers), clear conclusions could not be drawn as low numbers were recorded. Substantial numbers of chalcid parasitoids and syrphids were found under the UV-blocking films, but further research is needed to evaluate fully the effect of such films on biological control of aphids. Higher syrphid numbers and more aphid mummies were recorded under the UVI/EVA film, probably because of the higher numbers of aphids present in tunnels clad with this film. The potential that UV-blocking films have as an effective component of commercial Integrated Pest Management (IPM) systems, for protected horticultural crops, is discussed.
Resumo:
The parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae) has been used successfully for the control of Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). The development of UV-blocking plastic films has added a new component to future integrated pest management systems by disrupting insect pest infestation when UV light is excluded. Because both T. vaporariorum and E. formosa are reported to have similar spectral efficiency, there was a need to identify the impact of UV-blocking films on the dispersal behavior of both the pest and the natural enemy. In field studies, using choice-chamber experiments, E. formosa showed some preference to disperse into compartments where less UV light was blocked. However, further studies indicated that the effect was primarily attributable to the different light diffusion properties of the films tested. Thus, unlike its whitefly host, when the UV-absorbing properties of the films were similar, but the light diffusion properties differed, E.formosa adults preferred to disperse into compartments clad with films that had high light diffusion properties. When the plastic films differed most in their UV-absorbing capacity and had no light-diffusion capability, the initial dispersal of E. formosa between treatments was similar, although a small preference toward the environment with UV light was observed over time. When parasitoid dispersal was measured 3 h after release, more parasitoids were found on plants, suggesting that the parasitoids would search plants for whitefly hosts, even in a UV-blocked light environment. The potential for the integration of UV-blocking films with E. formosa in an advanced whitefly management system is discussed.
Resumo:
The 3' untranslated regions (3'UTRs) of flaviviruses are reviewed and analyzed in relation to short sequences conserved as direct repeats (DRs). Previously, alignments of the 3'UTRs have been constructed for three of the four recognized flavivirus groups, namely mosquito-borne, tick-borne, and nonclassified flaviviruses (MBFV, TBFV, and NCFV, respectively). This revealed (1) six long repeat sequences (LRSs) in the 3'UTR and open-reading frame (ORF) of the TBFV, (2) duplication of the 3'UTR of the NCFV by intramolecular recombination, and (3) the possibility of a common origin for all DRs within the MBFV. We have now extended this analysis and review it in the context of all previous published analyses. This has been achieved by constructing a robust alignment between all flaviviruses using the published DRs and secondary RNA structures as "anchors" to reveal additional homologies along the 3'UTR. This approach identified nucleotide regions within the MBFV, NKV (no-known vector viruses), and NCFV 3'UTRs that are homologous to different LRSs in the TBFV 3'UTR and ORF. The analysis revealed that some of the DRs and secondary RNA structures described individually within each flavivirus group share common evolutionary origins. The 3'UTR of flaviviruses, and possibly the ORF, therefore probably evolved through multiple duplication of an RNA domain, homologous to the LRS previously identified only in the TBFV. The short DRs in all virus groups appear to represent the evolutionary remnants of these domains rather than resulting from new duplications. The relevance of these flavivirus DRs to evolution, diversity, 3'UTR enhancer function, and virus transmission is reviewed.
Resumo:
Transmission properties of Iranian wheat stripe virus (IWSV), a tentative member of the genus Tenuivirus, were studied. Results showed that similar to other tenuiviruses, IWSV multiplies in its vector, Unkanodes tanasijevici. In bioassay experiments, IWSV transmission rate by individual U. tanasijevici showed an increase with time after acquisition. IWSV was transovarially transmitted to 88-100% of progeny. The nymphs continued to be infective in the adult stage but with decreased efficiency. Males and females transmitted the virus with equal efficiency. Transmission properties of IWSV confirm the position of the virus in the genus Tenuivirus.
Resumo:
Background: Although H5N1 avian influenza viruses pose the most obvious imminent pandemic threat, there have been several recent zoonotic incidents involving transmission of H7 viruses to humans. Vaccines are the primary public health defense against pandemics, but reliance on embryonated chickens eggs to propagate vaccine and logistic problems posed by the use of new technology may slow our ability to respond rapidly in a pandemic situation. Objectives: We sought to generate an H7 candidate vaccine virus suitable for administration to humans whose generation and amplification avoided the use of eggs. Methods: We generated a suitable H7 vaccine virus by reverse genetics. This virus, known as RD3, comprises the internal genes of A/Puerto Rico/8/34 with surface antigens of the highly pathogenic avian strain A/Chicken/Italy/13474/99 (H7N1). The multi-basic amino acid site in the HA gene, associated with high pathogenicity in chickens, was removed. Results: The HA modification did not alter the antigenicity of the virus and the resultant single basic motif was stably retained following several passages in Vero and PER. C6 cells. RD3 was attenuated for growth in embryonated eggs, chickens, and ferrets. RD3 induced an antibody response in infected animals reactive against both the homologous virus and other H7 influenza viruses associated with recent infection by H7 viruses in humans. Conclusions: This is the first report of a candidate H7 vaccine virus for use in humans generated by reverse genetics and propagated entirely in mammalian tissue culture. The vaccine has potential use against a wide range of H7 strains.
Resumo:
Myxozoans, belonging to the recently described Class Malacosporea, parasitise freshwater bryozoans during at least part of their life cycle, but no complete malacosporean life cycle is known to date. One of the 2 described malacosporeans is Tetracapsuloides bryosalmonae, the causative agent of salmonid proliferative kidney disease. The other is Buddenbrockia plumatellae, so far only found in freshwater bryozoans. Our investigations evaluated malacosporean life cycles, focusing on transmission from fish to bryozoan and from bryozoan to bryozoan. We exposed bryozoans to possible infection from: stages of T bryosalmonae in fish kidney and released in fish urine; spores of T bryosalmonae that had developed in bryozoan hosts; and spores and sac stages of B. plumatellae that had developed in bryozoans. Infections were never observed by microscopic examination of post-exposure, cultured bryozoans and none were detected by PCR after culture. Our consistent negative results are compelling: trials incorporated a broad range of parasite stages and potential hosts, and failure of transmission across trials cannot be ascribed to low spore concentrations or immature infective stages. The absence of evidence for bryozoan to bryozoan transmissions for both malacosporeans strongly indicates that such transmission is precluded in malacosporean life cycles. Overall, our results imply that there may be another malacosporean host which remains unidentified, although transmission from fish to bryozoans requires further investigation. However, the highly clonal life history of freshwater bryozoans is likely to allow both long-term persistence and spread of infection within bryozoan populations, precluding the requirement for regular transmission from an alternate host.
Resumo:
Synthesis, structural characterization, and magnetic properties of a new cyano-bridged one-dimensional iron (III)-gadolinium (III) compound, trans-[Gd(o-phen)(2)(H2O)(2)(mu-CN)(2)Fe(CN)(4)], - 2no-phen (o-phen = 1,10-phenanthroline), have been described. The compound crystallizes in the triclinic P (1) over bar space group with the following unit cell parameters: a = 10.538(14) angstrom, b = 12.004(14) angstrom, c = 20.61(2) angstrom, alpha = 92.41(1)degrees, beta = 92.76(1)degrees, gamma = 11 2.72(1)degrees, and Z = 2. In this complex, each gadolinium (III) is coordinated to two nitrile nitrogens of the CN groups coming from two different ferricyanides, the mutually trans cyanides of each of which links another different Gd-III to create -NC-Fe(CN)(4)-CN-Gd-NC- type 1-D chain structure. The one-dimensional chains are self-assembled in two-dimensions via weak C-H center dot center dot center dot N hydrogen bonds. Both the variable-temperature (2-300 K, 0.01 T and 0.8 T) and variable-field (0-50 000 Gauss, 2 K) magnetic measurements reveal the existence of very weak interaction in this molecule. The temperature dependence of the susceptibilities has been analyzed using a model for a chain of alternating classic (7/2) and quantum (1/2) spins. (c) 2005 Elsevier B.V. All rights reserved.