975 resultados para transmission electron microscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we demonstrate that the structural and optical properties of Si nanoclusters (Si ncs) formed by thermal annealing of SiOx films prepared by plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering are very different. In fact, at a fixed Si excess and annealing temperature, photoluminescence (PL) spectra of sputtered samples are redshifted with respect to PECVD samples, denoting a larger Si ncs size. In addition, PL intensity reaches a maximum in sputtered films at annealing temperatures much lower than those needed in PECVD films. These data are correlated with structural properties obtained by energy filtered transmission electron microscopy and electron energy loss spectroscopy. It is shown that in PECVD films only around 30% of the Si excess agglomerates in clusters while an almost complete agglomeration occurs in sputtered films. These data are explained on the basis of the different initial structural properties of the as-deposited films that become crucial for the subsequent evolution. © 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a novel phase separation phenomenon observed in the growth of ternary In(x)Ga(1-x)As nanowires by metalorganic chemical vapor deposition. A spontaneous formation of core-shell nanowires is investigated by cross-sectional transmission electron microscopy, revealing the compositional complexity within the ternary nanowires. It has been found that for In(x)Ga(1-x)As nanowires high precursor flow rates generate ternary In(x)Ga(1-x)As cores with In-rich shells, while low precursor flow rates produce binary GaAs cores with ternary In(x)Ga(1-x)As shells. First-principle calculations combined with thermodynamic considerations suggest that this phenomenon is due to competitive alloying of different group-III elements with Au catalysts, and variations in elemental concentrations of group-III materials in the catalyst under different precursor flow rates. This study shows that precursor flow rates are critical factors for manipulating Au catalysts to produce nanowires of desired composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-dimensional heterostructure nanobelts with a central CdSe region and lateral CdS structures are synthesized by a two-step physical vapor transport method. The large growth rate difference between lateral CdS structures on both +/- (0001) sides of the CdSe region is found. The growth anisotropy is discussed in terms of the polar nature of the side +/- (0001) surfaces of CdSe. High-resolution transmission electron microscopy reveals the CdSe central region covered with non-uniform CdS layer/islands. From micro-photoluminescence measurements, a systematic blueshift of emission energy from the central CdSe region in accordance with the increase of lateral CdS growth temperature is observed. This result indicates that the intermixing rate in the CdSe region with CdS increases with the increase of lateral CdS growth temperature. In conventional CdSSe ternary nanostructures, morphology and emission wavelength were correlated parameters. However, the morphology and emission wavelength are independently controllable in the CdS/CdSe lateral heterostructure nanobelts. This structure is attractive for applications in visible optoelectronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The movement of Au catalysts during growth of InAs on GaAs nanowires has been carefully investigated by transmission electron microscopy. It has been found that Au catalysts preferentially stay on { 112 } B GaAs sidewalls. Since a {112} surface is composed of a {111} facet and a {002} facet and since {111} facets are polar facets for the zinc-blende structure, this crystallographic preference is attributed to the different interface energies caused by the different polar facets. We anticipate that these observations will be useful for the design of nanowire heterostructure based devices. © 2009 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and morphological characteristics of InAs/GaAs radial nanowire heterostructures were investigated using transmission electron microscopy. It has been found that the radial growth of InAs was preferentially initiated on the { 112 } A sidewalls of GaAs nanowires. This preferential deposition leads to extraordinarily asymmetric InAs/GaAs radial nanowire heterostructures. Such formation of radial nanowire heterostructures provides an opportunity to engineer hierarchical nanostructures, which further widens the potential applications of semiconductor nanostructures. © 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To observe the axial growth behavior of InAs on GaAs nanowires, InAs was grown for different growth durations on GaAs nanowires using Au nanoparticles. Through transmission electron microscopy, we have observed the following evolution steps for the InAs growth. (1) In the initial stages of the InAs growth, InAs clusters into a wedge shape preferentially at an edge of the Au/GaAs interface by minimizing Au/InAs interfacial area; (2) with further growth of InAs, the Au particle moves sidewards and then downwards by preserving an interface with GaAs nanowire sidewalls. The lower interfacial energy of Au/GaAs than that of Au/In As is attributed to be the reason for such Au movement. This downward movement of the Au nanoparticle later terminates when the nanoparticle encounters InAs growing radially on the GaAs nanowire sidewalls, and with further supply of In and As vapor reactants, the Au nanoparticle assists the formation of InAs branches. These observations give some insights into vapor-liquid-solid growth and the formation of kinks in nanowire heterostructures. © 2008 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and compositional characteristics of heterointerfaces of Au-catalyzed GaAs/InAs and InAs/GaAs axial nanowire heterostructures were comprehensively investigated by transmission electron microscopy. It has been found that the GaAs/InAs interface is not sharp and contains an InGaAs transition segment, and in contrast, the InAs/GaAs interface is atomically sharp. This difference in the nature of heterointerfaces can be attributed to the difference in the affinity of the group III elements with the catalyst material. © 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinks formation in heterostructural nanowires was observed to be dominant when InAs nanowires were grown on GaAs nanowires. Nanowires were grown through vapor-liquid-solid (VLS) mechanism in an MOCVD (metalorganic chemical vapor deposition) reactor. GaAs nanowires were grown in [1 1 1 ]B direction on a GaAs (1 1 1 )B substrate. When InAs nanowires grown on the GaAs nanowires, most of the InAs nanowires changed their growth directions from [1 1 1 ]B to other 〈111〉B directions. The kinks formation is ascribed to the large compressive misfit strain at the GaAs/InAs interface (7.2% lattice mismatch between GaAs and InAs) and the high mobility of indium species during MOCVD growth. The in-depth analysis of the kinks formation was done by growing InAs for short times on the GaAs nanowires and characterizing the samples. The hindrance to compressively strain InAs to form coherent layers with GaAs pushed the InAs/Au interfaces to the sides of the GaAs nanowires growth ends. New InAs/Au interfaces have generated at the sides of GaAs nanowires, due to lateral growth of InAs on GaAs nanowires. These new interfaces led the InAs nanowires growth in other 〈111〉B directions. The morphological and structural features of these heterostructural kinked nanowires were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms and kinetics of axial Ge-Si nanowire heteroepitaxial growth based on the tailoring of the Au catalyst composition via Ga alloying are studied by environmental transmission electron microscopy combined with systematic ex situ CVD calibrations. The morphology of the Ge-Si heterojunction, in particular, the extent of a local, asymmetric increase in nanowire diameter, is found to depend on the Ga composition of the catalyst, on the TMGa precursor exposure temperature, and on the presence of dopants. To rationalize the findings, a general nucleation-based model for nanowire heteroepitaxy is established which is anticipated to be relevant to a wide range of material systems and device-enabling heterostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solution processed aluminum-doped zinc oxide (AZO)/multi-walled carbon nanotube (MWCNT) nanocomposite thin film has been developed offering simultaneously high optical transparency and low electrical resistivity, with a conductivity figure of merit (σDC/σopt) of ~75-better than PEDOT:PSS and many graphene derivatives. The reduction in sheet resistance of thin films of pristine MWCNTs is attributed to an increase in the conduction pathways within the sol-gel derived AZO matrix and reduced inter-MWCNT contact resistance. Films have been extensively characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffractometry (XRD), photoluminescence (PL), and ultraviolet-visible (UV-vis) spectroscopy. © 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tobacco BY-2 cells were exposed to microcystin-RR (MC-RR) at two concentrations, 60 mu g mL(-1) and 120 mu g mL(-1), to study the changes in morphology and ultrastructure of cells as a result of the exposure. Exposure to the lower concentration for 5 d led to typical apoptotic morphological changes including condensation of nuclear chromatin, creation of a characteristic 'half moon' structure, and cytoplasm shrinkage and decreased cell volume, as revealed through light microscopy. fluorescence microscopy, and transmission electron microscopy, respectively. Exposure to the higher concentration, on the other hand, led to morphological and ultrastructural changes typical of necrosis, such as rupture of the plasma membrane and the nuclear membrane and a marked swelling of cells. The presence of many vacuoles containing unusual deposits points to the involvement of vacuoles in detoxifying MC-RR. Results of the present study indicate that exposure of tobacco BY-2 cells to MC-RR at a lower concentration (60 mu g mL(-1)) results in apoptosis and that to a higher concentration (120 mu g mL(-1)), in necrosis. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A twin-plane based nanowire growth mechanism is established using Au catalyzed Ge nanowire growth as a model system. Video-rate lattice-resolved environmental transmission electron microscopy shows a convex, V-shaped liquid catalyst-nanowire growth interface for a ⟨112⟩ growth direction that is composed of two Ge {111} planes that meet at a twin boundary. Unlike bulk crystals, the nanowire geometry allows steady-state growth with a single twin boundary at the nanowire center. We suggest that the nucleation barrier at the twin-plane re-entrant groove is effectively reduced by the line energy, and hence the twin acts as a preferential nucleation site that dictates the lateral step flow cycle which constitutes nanowire growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytoplankton community in Lake Dianchi (Yunnan Province, Southwestern China) is dominated in April by a bloom of Aphanizomenon, that disappears Suddenly and is displaced by a Microcystis bloom in May. The reasons for the rapid bloom disappearance phenomenon and the temporal variability in the composition of phytoplankton assemblages are poorly understood. Cell growth, ultrastructure and physiological changes were examined in cultures of Aphanizomenon sp. DC01 isolated from Lake Dianchi exposed to different closes of rnicrocystin-RR (MC-RR) produced by the Microcystis bloom. MC-RR concentrations above 100 mu g L-1 markedly inhibited the pigment (chlorophyll-a, phycocyanin) synthesis and caused an increase of soluble carbohydrate and protein contents and nitrate reductase activity of toxin-treated blue-green algae. A drastic. reduction in photochemical efficiency of PSII (Fv/Fm) was also found. Morphological examinationn showed that the Aphanizomenon filaments disintegrated and file cells lysed gradually after 48 h Of toxin exposure. Transmission electron microscopy revealed that cellular inclusions of stressed cells almost leaked out completely and the cell membranes were grossly damaged. These findings demonstrate the allelopathic activity of Microcystis aeruginosa inducing physiological stress and cell death of Aphanizomenon sp. DC01 Although the active concentrations of microcystin were rather high, we propose that microcystin may function as allelopathic Substance due to inhomogeneous toxin concentrations close to Microcystis cells. Hence, it may play a role in species Succession of Aphanizomenon and Microcystis in Lake Dianchi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatively little is known in relation to pathological changes of immune organs in fish when exposed to MC-LR. The ultrastructural alteration of lymphocytes was examined in the spleen and pronephros of grass carp Ctenopharyngodon idella injected experimentally with microcystin-LR. The fish were intraperitoneally injected with MC-LR at a dose of 50 mu g/kg body weight, and the spleen and pronephros were dissected out at 1, 2, 7, 14 and 21 days post intraperitoneal injection (dpi). Pathological changes were then examined by transmission electron microscopy. Apoptosis was detected only in lymphocytes in the spleen, with obvious apoptotic features observed at 2 dpi; pathological changes of lymphocytes in the pronephros were also serious with mitochondria being highly edematous. However, damaged lymphocytes were almost un-observed in the spleen and pronephros at 21 dpi. These findings suggest that MC-LR can induce toxic effect on immune organs in grass carp, and the spleen may be much more sensitive to MC-LR stimulation. (C) 2008 Elsevier B.V. All rights reserved.