997 resultados para terahertz radiation
Resumo:
The effect of lasers of three wavelengths in the visible region - 476, 488 and 514 nm on mitotic and meiotic cell divisions, growth, yield and activity of specific enzymes were studied in two taxonomically diverse plant species — A/lium cepa L. and Vicia faba. The effect of laser exposures was compared with the effect of two physical mutagens (Gamma and Ultraviolet radiations) and two chemical mutagens (Ethyl Methane Sulphonate and Hydroxyl amine). The study indicated that lasers could be mutagenic causing aberration in the mitotic and meiotic cell divisions while also producing changes in the growth and yield of the plants. Lasers of higher wavelengths 488 and 514 nm caused aberrations in the early stages of mitotic cell division whereas lasers of lower wavelengths (476 nm) caused more aberrations in the later stages of mitotic cell division. Laser exposure of 488 nm wavelength at power density 400 mW induced higher mitotic and meiotic aberrations and also induced higher pollen sterility than lasers of 476 and 514 nm. The frequency of mitotic aberrations induced by lasers was lesser than that caused by y-irradiation but comparable to that induced by EMS and HA. Lasers cause mutations in higher frequencies than UV. Lasers had a stimulatory effect on growth and yield in both plant species. This stimulatory effect of lasers on germination could not however be correlated to the activity of amylase and protease, the key enzymes in seed gennination. Enzymes such as peroxidase and catalase, involved in scavenging of free oxygen radicals often produced by irradiation, did not show increased activity in laser irradiated samples. Further studies are required for elucidating the exact mechanisms by which lasers cause mutations
Resumo:
A novel antenna configuration comprised of two circular microstrip antennas (CMAs) resonating in the TMtt and TM2, modes, producing radiation characteristics suitable for a mobile telephone handset, is presented. The antennas operating at the same frequency are placed back to back with a separation comparable to the thickness of a typical handset. The radiation pattern consists of a region of reduced radiation intensity, which minimizes the radiation hazards to the user
Resumo:
This work focuses on the analysis of the influence of environment on the relative biological effectiveness (RBE) of carbon ions on molecular level. Due to the high relevance of RBE for medical applications, such as tumor therapy, and radiation protection in space, DNA damages have been investigated in order to understand the biological efficiency of heavy ion radiation. The contribution of this study to the radiobiology research consists in the analysis of plasmid DNA damages induced by carbon ion radiation in biochemical buffer environments, as well as in the calculation of the RBE of carbon ions on DNA level by mean of scanning force microscopy (SFM). In order to study the DNA damages, besides the common electrophoresis method, a new approach has been developed by using SFM. The latter method allows direct visualisation and measurement of individual DNA fragments with an accuracy of several nanometres. In addition, comparison of the results obtained by SFM and agarose gel electrophoresis methods has been performed in the present study. Sparsely ionising radiation, such as X-rays, and densely ionising radiation, such as carbon ions, have been used to irradiate plasmid DNA in trishydroxymethylaminomethane (Tris buffer) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES buffer) environments. These buffer environments exhibit different scavenging capacities for hydroxyl radical (HO0), which is produced by ionisation of water and plays the major role in the indirect DNA damage processes. Fragment distributions have been measured by SFM over a large length range, and as expected, a significantly higher degree of DNA damages was observed for increasing dose. Also a higher amount of double-strand breaks (DSBs) was observed after irradiation with carbon ions compared to X-ray irradiation. The results obtained from SFM measurements show that both types of radiation induce multiple fragmentation of the plasmid DNA in the dose range from D = 250 Gy to D = 1500 Gy. Using Tris environments at two different concentrations, a decrease of the relative biological effectiveness with the rise of Tris concentration was observed. This demonstrates the radioprotective behavior of the Tris buffer solution. In contrast, a lower scavenging capacity for all other free radicals and ions, produced by the ionisation of water, was registered in the case of HEPES buffer compared to Tris solution. This is reflected in the higher RBE values deduced from SFM and gel electrophoresis measurements after irradiation of the plasmid DNA in 20 mM HEPES environment compared to 92 mM Tris solution. These results show that HEPES and Tris environments play a major role on preventing the indirect DNA damages induced by ionising radiation and on the relative biological effectiveness of heavy ion radiation. In general, the RBE calculated from the SFM measurements presents higher values compared to gel electrophoresis data, for plasmids irradiated in all environments. Using a large set of data, obtained from the SFM measurements, it was possible to calculate the survive rate over a larger range, from 88% to 98%, while for gel electrophoresis measurements the survive rates have been calculated only for values between 96% and 99%. While the gel electrophoresis measurements provide information only about the percentage of plasmids DNA that suffered a single DSB, SFM can count the small plasmid fragments produced by multiple DSBs induced in a single plasmid. Consequently, SFM generates more detailed information regarding the amount of the induced DSBs compared to gel electrophoresis, and therefore, RBE can be calculated with more accuracy. Thus, SFM has been proven to be a more precise method to characterize on molecular level the DNA damage induced by ionizing radiations.
Resumo:
A comparison between experimental and calculated spectral shape and energy dependence of the M MO x-ray anisotropy in heavy-ion collisions of I on Au is presented. The calculation is performed within the kinematic-dipole model of anisotropy using MO x-rays determined from SCF relativistic correlation diagrams.
Resumo:
The quasimolecular M radiation emitted in collisions between Xe ions of up to 6 MeV energy and solid targets of Ta, Au, Pb and Bi, as well as a gaseous target of Pb(CH_3)_4, has been studied. Using a realistic theoretical correlation diagram, a semiquantitative explanation of the observed peak structure is given.
Resumo:
Sensing with electromagnetic waves having frequencies in the Terahertz-range is a very attractive investigative method with applications in fundamental research and industrial settings. Up to now, a lot of sources and detectors are available. However, most of these systems are bulky and have to be used in controllable environments such as laboratories. In 1993 Dyakonov and Shur suggested that plasma waves developing in field-effect-transistors can be used to emit and detect THz-radiation. Later on, it was shown that these plasma waves lead to rectification and allows for building efficient detectors. In contrast to the prediction that these plasma waves lead to new promising solid-state sources, only a few weak sources are known up to now. This work studies THz plasma waves in semiconductor devices using the Monte Carlo method in order to resolve this issue. A fast Monte Carlo solver was developed implementing a nonparabolic bandstructure representation of the used semiconductors. By investigating simplified field-effect-transistors it was found that the plasma frequency follows under equilibrium conditions the analytical predictions. However, no current oscillations were found at room temperature or with a current flowing in the channel. For more complex structures, consisting of ungated and gated regions, it was found that the plasma frequency does not follow the value predicted by the dispersion relation of the gated nor the ungated device.
Resumo:
Atmospheric downwelling longwave radiation is an important component of the terrestrial energy budget; since it is strongly related with the greenhouse effect, it remarkably affects the climate. In this study, I evaluate the estimation of the downwelling longwave irradiance at the terrestrial surface for cloudless and overcast conditions using a one-dimensional radiative transfer model (RTM), specifically the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). The calculations performed by using this model were compared with pyrgeometer measurements at three different European places: Girona (NE of the Iberian Peninsula), Payerne (in the East of Switzerland), and Heselbach (in the Black Forest, Germany). Several studies of sensitivity based on the radiative transfer model have shown that special attention on the input of temperature and water content profiles must be held for cloudless sky conditions; for overcast conditions, similar sensitivity studies have shown that, besides the atmospheric profiles, the cloud base height is very relevant, at least for optically thick clouds. Also, the estimation of DLR in places where radiosoundings are not available is explored, either by using the atmospheric profiles spatially interpolated from the gridded analysis data provided by European Centre of Medium-Range Weather Forecast (ECMWF), or by applying a real radiosounding of a nearby site. Calculations have been compared with measurements at all sites. During cloudless sky conditions, when radiosoundings were available, calculations show differences with measurements of -2.7 ± 3.4 Wm-2 (Payerne). While no in situ radiosoundings are available, differences between modeling and measurements were about 0.3 ± 9.4 Wm-2 (Girona). During overcast sky conditions, when in situ radiosoundings and cloud properties (derived from an algorithm that uses spectral infrared and microwave ground based measurements) were available (Black Forest), calculations show differences with measurements of -0.28 ± 2.52 Wm2. When using atmospheric profiles from the ECMWF and fixed values of liquid water path and droplet effective radius (Girona) calculations show differences with measurements of 4.0 ± 2.5 Wm2. For all analyzed sky conditions, it has been confirmed that estimations from radiative transfer modeling are remarkably better than those obtained by simple parameterizations of atmospheric emissivity.
Resumo:
Monthly mean water vapour and clear-sky radiation extracted from the European Centre for Medium Range Weather Forecasts 40-year reanalysis (ERA40) forecasts are assessed using satellite observations and additional reanalysis data. There is a marked improvement in the interannual variability of column-integrated water vapour (CWV) over the oceans when using the 24-hour forecasts compared with the standard 6-hour forecasts products. The spatial distribution of CWV are well simulated by the 6-hour forecasts; using the 24-hour forecasts does not degrade this simulation substantially and in many cases improves on the quality. There is also an improved simulation of clear-sky radiation from the 24-hour forecasts compared with the 6-hour forecasts based on comparison with satellite observations and empirical estimates. Further work is required to assess the quality of water vapour simulation by reanalyses over land regions. Over the oceans, it is recommended that 24-hour forecasts of CWV and clear-sky radiation are used in preference to the standard 6-hour forecast products from ERA40
Resumo:
The Geostationary Earth Radiation Budget instrument on Meteosat-8, located over Africa, provides unprecedented temporal sampling (~17 minutes) of the broadband emitted thermal and reflected solar radiances. We analyse the diurnal cycle of the outgoing longwave radiation (OLR) fluxes derived from the thermal radiances for July 2006. Principal component (PC) analysis separates the signals of the surface temperature response to solar heating and of the development of convective clouds. The first two PCs explain most of the OLR variations: PC1 (surface heating) explains 82.3% of the total variance and PC2 (cloud development) explains 12.8% of the variance. Convection is initiated preferentially over mountainous regions and the cloud then advects downstream in the ambient flow. Diurnal variations are much weaker over the oceans, but a coherent signal over the Gulf of Guinea suggests that the cloudiness is modulated by the diurnally varying contrast between the Gulf and the adjacent land mass.
Resumo:
Simulations of the top-of-atmosphere radiative-energy budget from the Met Office global numerical weather-prediction model are evaluated using new data from the Geostationary Earth Radiation Budget (GERB) instrument on board the Meteosat-8 satellite. Systematic discrepancies between the model simulations and GERB measurements greater than 20 Wm-2 in outgoing long-wave radiation (OLR) and greater than 60 Wm-2 in reflected short-wave radiation (RSR) are identified over the period April-September 2006 using 12 UTC data. Convective cloud over equatorial Africa is spatially less organized and less reflective than in the GERB data. This bias depends strongly on convective-cloud cover, which is highly sensitive to changes in the model convective parametrization. Underestimates in model OLR over the Gulf of Guinea coincide with unrealistic southerly cloud outflow from convective centres to the north. Large overestimates in model RSR over the subtropical ocean, greater than 50 Wm-2 at 12 UTC, are explained by unrealistic radiative properties of low-level cloud relating to overestimation of cloud liquid water compared with independent satellite measurements. The results of this analysis contribute to the development and improvement of parametrizations in the global forecast model.