995 resultados para surface coordination compound
Resumo:
We analyze the role of commitment in pre-play communication for ensuringefficient evolutionarily stable outcomes in coordination games. All players are a priori identical as they are drawn from the same population. In games where efficient outcomes can be reached by players coordinating on the same action we find commitment to be necessary to enforce efficiency. In games where efficienct outcomes only result from play of different actions, communication without commitment is most effective although efficiency can no longer be guaranteed. Only when there are many messages then inefficient outcomes are negligible as their basins of attraction become very small.
Resumo:
We perform an experiment on a pure coordination game with uncertaintyabout the payoffs. Our game is closely related to models that have beenused in many macroeconomic and financial applications to solve problemsof equilibrium indeterminacy. In our experiment each subject receives anoisy signal about the true payoffs. This game has a unique strategyprofile that survives the iterative deletion of strictly dominatedstrategies (thus a unique Nash equilibrium). The equilibrium outcomecoincides, on average, with the risk-dominant equilibrium outcome ofthe underlying coordination game. The behavior of the subjects convergesto the theoretical prediction after enough experience has been gained. The data (and the comments) suggest that subjects do not apply through"a priori" reasoning the iterated deletion of dominated strategies.Instead, they adapt to the responses of other players. Thus, the lengthof the learning phase clearly varies for the different signals. We alsotest behavior in a game without uncertainty as a benchmark case. The gamewith uncertainty is inspired by the "global" games of Carlsson and VanDamme (1993).
Resumo:
The plant cuticle composed of cutin, a lipid-derived polyester, and cuticular waxes covers the aerial portions of plants and constitutes a hydrophobic extracellular matrix layer that protects plants against environmental stresses. The botrytis-resistant 1 (bre1) mutant of Arabidopsis reveals that a permeable cuticle does not facilitate the entry of fungal pathogens in general, but surprisingly causes an arrest of invasion by Botrytis. BRE1 was identified to be long-chain acyl-CoA synthetase2 (LACS2) that has previously been shown to be involved in cuticle development and was here found to be essential for cutin biosynthesis. bre1/lacs2 has a five-fold reduction in dicarboxylic acids, the typical monomers of Arabidopsis cutin. Comparison of bre1/lacs2 with the mutants lacerata and hothead revealed that an increased permeability of the cuticle facilitates perception of putative elicitors in potato dextrose broth, leading to the presence of antifungal compound(s) at the surface of Arabidopsis plants that confer resistance to Botrytis and Sclerotinia. Arabidopsis plants with a permeable cuticle have thus an altered perception of their environment and change their physiology accordingly.
Resumo:
We provide here a detailed protocol for studying the changes in electrical surface potential of leaves. This method has been developed over the years by plant physiologists and is currently used in different variants in many laboratories. The protocol records surface potential changes to measure long-distance electrical signals induced by diverse stimuli such as leaf wounding or current injection. This technique can be used to determine signaling speeds, to measure the connectivity between different plant organs and-by exploiting mutant plants-to identify transporters and ion channels involved in electrical signaling. The approach can be combined with the analysis of mRNA expression and of metabolite concentrations to correlate electrical signaling to specific physiological events. We describe how to use this protocol on Arabidopsis, looking at the effects of leaf wounding; however, it is broadly applicable to other plants and can be used to study other aspects of plant physiology. After wound infliction, surface potential recording takes ∼20 min per plant.
Resumo:
Breast cancer is the most common cancer among women, 23% (1.3 million) of the total of new cases and the second leading cause of cancer death in women exceeded only by lung cancer. Natural medicines have been proven to be a central source of narrative agents with a pharmaceutical potential. Costunolide is sesquiterpene lactones consisting of diverse plant chemicals that exhibit anti cancer action through cytotoxic effects on various cancer cells. The objectives of present study were to explore the effects of natural compounds on the proliferation of MCF-7 cells and to determine the role of ROS in natural compounds-induced apoptosis in breast cancer cells with a therapeutic potential. Results showed that costunolide screened, possess potent anticancer properties against breast cancer MCF-7 cells, Costunolide was observed as strong anti-proliferative agent with IC50 = 50µM. The anti-proliferative effect of costunolide on MCF cells was confirmed by live/dead assay using fluorescent probes calcein AV/PI. The results demonstrated that treatment of cells with costunolide decreased the viability of MCF-7 cells in a dose-dependent manner. To determine the costunolide-induced apoptosis, flow cytometric analysis was carried out. The results showed that costunolide induced apoptosis in a dose-dependent manner in breast cancer MCF-7cells. ROS are well known mediators of intracellular signaling of cascades. The excessive generation of ROS can induce oxidative stress, loss of cell functioning, and apoptosis. In the present study, we assumed that costunolide might arouse ROS level, which could be involved in induction of apoptosis. Therefore, the intracellular ROS level was measured using the ROS-detecting fluorescence dye 2, 7-dichlorofluorescein diacetate (DCF-DA). Interestingly these effects were significantly abrogated when the cells were pretreated with N-acetyl- cysteine (NAC), a specific ROS inhibitor. Costunolide induces apoptosis through extrinsic pathway in MCF-7 breast cancer cells, In order to examine whether costunolide suppresses cell growth inducing apoptotic cell death, we analyzed DNA contents and apoptosis-related proteins expression level by flow cytometry and western blot, respectively in MCF-7 breast cancer cells we investigated whether costunolide activates extrinsic apoptotic pathway. We examined the expression levels of death receptor signaling-related proteins, caspase-3, and PARP. The results showed that procaspase-3 was cleaved to yield 17 and 20kDa fragments and activation of PARP in treated cells with 25 and 50μM of costunolide. Costunolide induce apoptosis through intrinsic mitochondria pathway in MCF-7 breast cancer Cells. We examined the expression levels of mitochondrial apoptotic pathway related proteins such as anti-apoptotic protein, B-cell lymphoma protein-2 (Bcl2), and pro-apoptotic protein Bax. Costunolide involved in the down regulation of Bcl-2 and up regulation of Bax. These results suggest that costunolide may have beneficial effects for the reduction of breast cancer growth, and new therapeutic strategy for the treatment of human cancers.
Resumo:
Cell surface receptors bind ligands expressed on other cells (in trans) in order to communicate with neighboring cells. However, an increasing number of cell surface receptors are found to also interact with ligands expressed on the same cell (in cis). These observations raise questions regarding the biological role of such cis interactions. Specifically, it is important to know whether cis and trans binding have distinct functional effects and, if so, how a single cell discriminates between interactions in cis versus trans. Further, what are the structural features that allow certain cell surface receptors to engage ligand both on the same as well as on an apposed cell membrane? Here, we summarize known examples of receptors that display cis-trans binding and discuss the emerging diversity of biological roles played by these unconventional two-way interactions, along with their structural basis.
Resumo:
Adjustment of Na+ balance in extracellular fluids is achieved by regulated Na+ transport involving the amiloride-sensitive epithelial Na+ channel (ENaC) in the distal nephron. In this context, ENaC is controlled by a number of hormones, including vasopressin, which promotes rapid translocation of water and Na+ channels to the plasma membrane and long-term effects on transcription of vasopressin-induced and -reduced transcripts. We have identified a mRNA encoding the deubiquitylating enzyme ubiquitin-specific protease 10 (Usp10), whose expression is increased by vasopressin at both the mRNA and the protein level. Coexpression of Usp10 in ENaC-transfected HEK-293 cells causes a more than fivefold increase in amiloride-sensitive Na+ currents, as measured by whole cell patch clamping. This is accompanied by a three- to fourfold increase in surface expression of alpha- and gamma-ENaC, as shown by cell surface biotinylation experiments. Although ENaC is well known to be regulated by its direct ubiquitylation, Usp10 does not affect the ubiquitylation level of ENaC, suggesting an indirect effect. A two-hybrid screen identified sorting nexin 3 (SNX3) as a novel substrate of Usp10. We show that it is a ubiquitylated protein that is degraded by the proteasome; interaction with Usp10 leads to its deubiquitylation and stabilization. When coexpressed with ENaC, SNX3 increases the channel's cell surface expression, similarly to Usp10. In mCCD(cl1) cells, vasopressin increases SNX3 protein but not mRNA, supporting the idea that the vasopressin-induced Usp10 deubiquitylates and stabilizes endogenous SNX3 and consequently promotes cell surface expression of ENaC
Resumo:
PURPOSE: This study aimed at examining the influence of different playing surfaces on in-shoe loading patterns in each foot (back and front) separately during the first serve in tennis. METHODS: Ten competitive tennis players completed randomly five first (ie, flat) serves on two different playing surfaces: clay vs GreenSet. Maximum and mean force, peak and mean pressure, mean area, contact area and relative load were recorded by Pedar insoles divided into 9 areas for analysis. RESULTS: Mean pressure was significantly lower (123 ± 30 vs 98 ± 26 kPa; -18.5%; P < .05) on clay than on GreenSet when examining the entire back foot. GreenSet induced higher mean pressures under the medial forefoot, lateral forefoot and hallux of the back foot (+9.9%, +3.5% and +15.9%, respectively; both P < .01) in conjunction with a trend toward higher maximal forces in the back hallux (+15.1%, P = .08). Peak pressures recorded under the central and lateral forefoot (+21.8% and +25.1%; P < .05) of the front foot but also the mean area values measured on the back medial and lateral midfoot were higher (P < .05) on clay. No significant interaction between foot region and playing surface on relative load was found. CONCLUSIONS: It is suggested that in-shoe loading parameters characterizing the first serve in tennis are adjusted according to the ground type surface. A lesser asymmetry in peak (P < .01) and mean (P < .001) pressures between the two feet was found on clay, suggesting a greater need for stability on this surface.
Resumo:
Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.
Resumo:
Se analizó información sobre parámetros biogeoquímicos como pH, CO2 parcialmente disuelto, clorofila-a, oxígeno, salinidad y temperatura, obtenidos en el Sistema de Humboldt frente a Perú en los años 2007-2009, a fin de comprender la importancia del pH como una variable clave para trazar la variabilidad biogeoquímica del Sistema de Afloramiento de Humboldt. Las Aguas Costeras Frías (ACF) ricas en nutrientes evidencian una relación inversa con el pH, en ese sentido valores de 7,6 a 8,0 se encontraron asociados a la ocurrencia de eventos de afloramiento; en condiciones frías como La Niña 2007 el pH predominante se encuentra por debajo de 8,0, y en el caso de las Aguas Subtropicales Superficiales presentan un pH entorno a 8,3. La productividad en los veranos se incrementa debido a factores como la intensidad de luz generándose núcleos de clorofila-a superiores a 10,0 μg.L-1; como constituyentes de la reacción bioquímica de fotosíntesis se tiene en cuenta la forma inmediata del compuesto CO2 y el consumo de iones hidronio; en situaciones extremas de fertilización, se tiene elevado pH entre 8,2 e inclusive 9,0, en donde los contenidos de oxígeno disuelto superan los 6,0 mL.L-1.
Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data
Resumo:
In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS) height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80), while the wet season SAR data have somewhat higher secondary variation (R² = 0.59). This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.