969 resultados para superdirective arrays
Resumo:
Negabinary is a component of the positional number system. A complete set of negabinary arithmetic operations are presented, including the basic addition/subtraction logic, the two-step carry-free addition/subtraction algorithm based on negabinary signed-digit (NSD) representation, parallel multiplication, and the fast conversion from NSD to the normal negabinary in the carry-look-ahead mode. All the arithmetic operations can be performed with binary logic. By programming the binary reference bits, addition and subtraction can be realized in parallel with the same binary logic functions. This offers a technique to perform space-variant arithmetic-logic functions with space-invariant instructions. Multiplication can be performed in the tree structure and it is simpler than the modified signed-digit (MSD) counterpart. The parallelism of the algorithms is very suitable for optical implementation. Correspondingly, a general-purpose optical logic system using an electron trapping device is suggested. Various complex logic functions can be performed by programming the illumination of the data arrays without additional temporal latency of the intermediate results. The system can be compact. These properties make the proposed negabinary arithmetic-logic system a strong candidate for future applications in digital optical computing with the development of smart pixel arrays. (C) 1999 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(99)00803-X].
Resumo:
二维编码阵列是编码孔径成像的关键部件,它直接决定着再现的层析图像的质量。目前仍没有一种理想的二维阵列既具有较高的量子收集率,又具有良好的层析成像特性。采用一种新的方法——分割矩阵(DIRECT)全局优化算法,设计二维阵列,该算法适用于多变量“黑盒”问题的求解,并且具有比其他优化算法更快的收敛速度。其目的是设计一类自相关函数旁瓣最大值为1,同时具有最火填充率的二维编码阵列。理论分析及实验结果表明:用该算法搜索得到的二维阵列既具有较高的量子收集率,又具有良好的层析成像特性。
Resumo:
The layout of a typical optical microscope has remained effectively unchanged over the past century. Besides the widespread adoption of digital focal plane arrays, relatively few innovations have helped improve standard imaging with bright-field microscopes. This thesis presents a new microscope imaging method, termed Fourier ptychography, which uses an LED to provide variable sample illumination and post-processing algorithms to recover useful sample information. Examples include increasing the resolution of megapixel-scale images to one gigapixel, measuring quantitative phase, achieving oil-immersion quality resolution without an immersion medium, and recovering complex three dimensional sample structure.
Resumo:
Dammann gratings are well known for their ability to generate arrays of Lmiform-intensity beams from an incoming monochromatic beam. We apply the even-numbered Dammann grating to achieve dynamic optical coupled technology. A 1 x N dynamic optical coupled system is developed by employing two complementary even-numbered Dammann gratings. With this system we can achieve a beam splitter and combiner as a switch between them according to the relative shift between the gratings. Also, this system is a preferable approach in integral packaging. More importantly, this device has the potential to be applied to the splitting of a large array, e.g., 8 x 16 array and 64 x 64 array, which is difficult to be realized with conventional splitting methods. We experimentally demonstrated a 1 x 8 coupler at the wavelength of 1550 nm. Furthermore we analyze the effects of the alignment errors between gratings and the wavelength-dependent error on efficiency and uniformity. The experimental results and the influence of alignment error and wavelength-dependent error are analyzed in detail. (c) 2006 Optical Society of America.
Resumo:
The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel’dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample.
The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased-arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the detector timestreams during recent science observations. Noise due to fluctuations in atmospheric emission dominate at long timescales (less than 0.5 Hz). Fluctuations in the amplitude and phase of the microwave probe signal due to the readout electronics contribute significant 1/f and drift-type noise at shorter timescales. The atmospheric noise is removed by creating a template for the fluctuations in atmospheric emission from weighted averages of the detector timestreams. The electronics noise is removed by using probe signals centered off-resonance to construct templates for the amplitude and phase fluctuations. The algorithms that perform the atmospheric and electronic noise removal are described. After removal, we find good agreement between the observed residual noise and our expectation for intrinsic detector noise over a significant fraction of the signal bandwidth.
Resumo:
Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.
Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.
Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.
Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.
Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.
Resumo:
Buildings in Port Aransas encounter drastic environmental challenges: the potential catastrophic storm surge and high winds from a hurricane, and daily conditions hostile to buildings, vehicles, and even most vegetation. Its location a few hundred feet from the Gulf of Mexico and near-tropical latitude expose buildings to continuous high humidity, winds laden with scouring sand and corrosive salt, and extremes of temperature and ultraviolet light. Building construction methods are able to address each of these, but doing so in a sustainable way creates significant challenges. The new research building at the Marine Science Institute has been designed and is being constructed to meet the demand for both survivability and sustainability. It is tracking towards formal certification as a LEED Gold structure while being robust and resistant to the harsh coastal environment. The effects of a hurricane are mitigated by elevating buildings and providing a windproof envelope. Ground-level enclosures are designed to be sacrificial and non-structural so they can wash or blow away without imposing damage on the upper portions of the building, and only non-critical functions and equipment will be supported within them. Design features that integrate survivability with sustainability include: orientation of building axis; integral shading from direct summer sunlight; light wells; photovoltaic arrays; collection of rainwater and air conditioning condensate for use in landscape irrigation; reduced impervious cover; xeriscaping and indigenous plants; recycling of waste heat from air conditioning systems; roofing system that reflects light and heat; long life, low maintenance stainless steel, high-tensile vinyl, hard-anodized aluminum and hot-dipped galvanized mountings throughout; chloride-resistant concrete; reduced visual impact; recycling of construction materials.
Resumo:
介绍了采用光刻离子交换工艺制作平面交叉型微透镜阵列的方法。利用积分形式的光线方程式讨论了平面交叉型微透镜的近轴光学特性,研究了微透镜的光线轨迹方程式和一些重要的近轴成像特性,利用ABCD定理得到了平面交叉型微透镜像距、焦距、像高、横向放大率和主平面位置的数学表达式,焦距的理论计算结果和实验数据吻合得很好。
Resumo:
Aperture patterns play a vital role in coded aperture imaging ( CAI) applications. In recent years, many approaches were presented to design optimum or near-optimum aperture patterns. Uniformly redundant arrays (URAs) are, undoubtedly, the most successful for constant sidelobe of their periodic autocorrelation function. Unfortunately, the existing methods can only be used to design URAs with a limited number of array sizes and fixed autocorrelation sidelobe-to-peak ratios. In this paper, we present a novel method to design more flexible URAs. Our approach is based on a searching program driven by DIRECT, a global optimization algorithm. We transform the design question to a mathematical model, based on the DIRECT algorithm, which is advantageous for computer implementation. By changing determinative conditions, we obtain two kinds of types of URAs, including the filled URAs which can be constructed by existing methods and the sparse URAs which have never been mentioned by other authors as far as we know. Finally, we carry out an experiment to demonstrate the imaging performance of the sparse URAs.
Resumo:
Based on the optical characteristics of PLZT electro-optic ceramic, two kinds of electro-optic deflectors, triangular electrode structure and optical phased array technology, are studied in detail by using transverse electro-optic effect. Theoretically, the electro-optic deflection characteristics and mechanisms of the deflectors are analyzed. Experimentally, the optical characteristics of ceramic wafer, such as the phase modulation, the hysteresis and the electro-induced loss characteristics, are measured firstly, and then the beam deflection experiments are designed to verify the theoretical results. Moreover, the effect of temperature on the performance of triangular electrode deflector is investigated. The characteristics of both deflectors are also compared and illuminated. (c) 2007 Optical Society of America.
Resumo:
When noises considerations are made, nonredundant arrays (NRAs) are endowed with many advantages which other arrays e.g., uniformly redundant arrays (URAs) do not possess in applications of coded aperture imaging. However, lower aperture opening ratio limits the applications of NRA in practice. In this paper, we present a computer searching method based on a global optimization algorithm named DIRECT to design NRAs. Compared with the existing NRAs e.g., Golay's NRAs, which are well known and widely used in various applications, NRAs found by our method have higher aperture opening ratio and auto correlation compression ratio. These advantages make our aperture arrays be very useful for practical applications especially for which of aperture size are limited. Here, we also present some aperture arrays we found. These aperture arrays have an interesting property that they belong to both NRA and URA. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
介绍了几种典型的激光阵列锁相和孔径装填技术,重点综述了国内外光纤激光阵列锁相和孔径装填技术的研究进展,最后对高功率高光束质量激光光源的应用和发展前景进行了展望。
Resumo:
综述了基于电光材料的光学相控阵(OPA)的研究进展。介绍了光学相控阵技术的基本原理以及不同电光材料(铌酸锂电光晶体,AlGaAs光波导,液晶和掺镧锆钛酸铅(PLZT)电光陶瓷)光学相控阵技术的基本构想和涉及的关键技术;着重介绍近年来基于PLZT电光陶瓷材料光学相控阵技术的发展情况以及在这方面的最新研究成果,包括单级相控阵、级联相控阵、不同电极结构(表面电极和上下电极结构)相控阵技术等;最后简要介绍了光学相控阵技术在激光雷达等军事领域中的应用。
Resumo:
While photovoltaics hold much promise as a sustainable electricity source, continued cost reduction is necessary to continue the current growth in deployment. A promising path to continuing to reduce total system cost is by increasing device efficiency. This thesis explores several silicon-based photovoltaic technologies with the potential to reach high power conversion efficiencies. Silicon microwire arrays, formed by joining millions of micron diameter wires together, were developed as a low cost, low efficiency solar technology. The feasibility of transitioning this to a high efficiency technology was explored. In order to achieve high efficiency, high quality silicon material must be used. Lifetimes and diffusion lengths in these wires were measured and the action of various surface passivation treatments studied. While long lifetimes were not achieved, strong inversion at the silicon / hydrofluoric acid interface was measured, which is important for understanding a common measurement used in solar materials characterization.
Cryogenic deep reactive ion etching was then explored as a method for fabricating high quality wires and improved lifetimes were measured. As another way to reach high efficiency, growth of silicon-germanium alloy wires was explored as a substrate for a III-V on Si tandem device. Patterned arrays of wires with up to 12% germanium incorporation were grown. This alloy is more closely lattice matched to GaP than silicon and allows for improvements in III-V integration on silicon.
Heterojunctions of silicon are another promising path towards achieving high efficiency devices. The GaP/Si heterointerface and properties of GaP grown on silicon were studied. Additionally, a substrate removal process was developed which allows the formation of high quality free standing GaP films and has wide applications in the field of optics.
Finally, the effect of defects at the interface of the amorphous silicon heterojuction cell was studied. Excellent voltages, and thus efficiencies, are achievable with this system, but the voltage is very sensitive to growth conditions. We directly measured lateral transport lengths at the heterointerface on the order of tens to hundreds of microns, which allows carriers to travel towards any defects that are present and recombine. This measurement adds to the understanding of these types of high efficiency devices and may aid in future device design.
Resumo:
We have measured differential cross-sections for the two-body photodisintegration of Helium-3, ɣ + He3 → p + d, between incident photon energies of 200 and 600 MeV, and for center of mass frame angles between 30° and 150°. Both final state particles were detected in arrays of wire spark chambers and scintillation counters; the high momentum particle was analyzed in a magnet spectrometer. The results are interpreted in terms of amplitudes to produce the ∆(1236) resonance in an intermediate state, as well as non-resonant amplitudes. This experiment, together with an (unfinished) experiment on the inverse reaction, p + d → He3 + ɣ, will provide a reciprocity test of time reversal invariance.