969 resultados para structural characteristics
Resumo:
Lipophilic conjugates of the antitumor drug methotrexate (MTX) with lipoamino acids (LAAs) have been previously described as a tool to enhance MTX passive entrance into cells, overcoming a form of transport resistance which makes tumour cells insensitive to the antimetabolite. A knowledge of the mechanisms of interaction of such lipophilic derivatives with cell membranes could be useful for planning further lipophilic MTX derivatives with an optimal antitumour activity. To this aim, a calorimetric study was undertaken using a biomembrane model made from synthetic 1,2-dipalmitoyl-glycero-3-phosphocholine (DPPC) multilamellar liposomes. The effects of MTX and conjugates on the phase transition of liposomes were investigated using differential scanning calorimetry. The interaction of pure MTX with the liposomes was limited to the outer part of the phospholipid bilayers, due to the polar nature of the drug. Conversely, its lipophilic conjugates showed a hydrophobic kind of interaction, perturbing the packing order of DPPC bilayers. In particular, a reduction of the enthalpy of transition from the gel to the liquid crystal phase of DPPC membranes was observed. Such an effect was related to the structure and mole fraction of the conjugates in the liposomes. The antitumour activity of MTX conjugates was evaluated against cultures of a CCRF-CEM human leukemic T-cell line and a related MTX resistant sub-line. The in vitro cell growth inhibitory activity was higher for bis(tetradecyl) conjugates than for both the other shorter- and longer-chain derivatives. The biological effectiveness of the various MTX derivatives correlated very well with the thermotropic effects observed on the phase transition of DPPC biomembranes. (C), 2001 Elsevier Science B.V All rights reserved.
Resumo:
The adaptations of muscle to sprint training can be separated into metabolic and morphological changes. Enzyme adaptations represent a major metabolic adaptation to sprint training, with the enzymes of all three energy systems showing signs of adaptation to training and some evidence of a return to baseline levels with detraining. Myokinase and creatine phosphokinase have shown small increases as a result of short-sprint training in some studies and elite sprinters appear better able to rapidly breakdown phosphocreatine (PCr) than the sub-elite. No changes in these enzyme levels have been reported as a result of detraining. Similarly, glycolytic enzyme activity (notably lactate dehydrogenase, phosphofructokinase and glycogen phosphorylase) has been shown to increase after training consisting of either long (> 10-second) or short (< 10-second) sprints. Evidence suggests that these enzymes return to pre-training levels after somewhere between 7 weeks and 6 months of detraining. Mitochondrial enzyme activity also increases after sprint training, particularly when long sprints or short recovery between short sprints are used as the training stimulus. Morphological adaptations to sprint training include changes in muscle fibre type, sarcoplasmic reticulum, and fibre cross-sectional area. An appropriate sprint training programme could be expected to induce a shift toward type Ha muscle, increase muscle cross-sectional area and increase the sarcoplasmic reticulum volume to aid release of Ca2+. Training volume and/or frequency of sprint training in excess of what is optimal for an individual, however, will induce a shift toward slower muscle contractile characteristics. In contrast, detraining appears to shift the contractile characteristics towards type IIb, although muscle atrophy is also likely to occur. Muscle conduction velocity appears to be a potential non-invasive method of monitoring contractile changes in response to sprint training and detraining. In summary, adaptation to sprint training is clearly dependent on the duration of sprinting, recovery between repetitions, total volume and frequency of training bouts. These variables have profound effects on the metabolic, structural and performance adaptations from a sprint-training programme and these changes take a considerable period of time to return to baseline after a period of detraining. However, the complexity of the interaction between the aforementioned variables and training adaptation combined with individual differences is clearly disruptive to the transfer of knowledge and advice from laboratory to coach to athlete.
Resumo:
When smooth muscle cells are enzyme-dispersed from tissues they lose their original filament architecture and extracellular matrix surrounds. They then reorganize their structural proteins to accommodate a 2-D growth environment when seeded onto culture dishes. The aim of the present study was to determine the expression and reorganization of the structural proteins in rabbit aortic smooth muscle cells seeded into 3-D collagen gel and Matrigel (a basement membrane matrix). It was shown that smooth muscle cells seeded in both gels gradually reorganize their structural proteins into an architecture similar to that of their in vivo counterparts. At the same time, a gradual decrease in levels of smooth muscle-specific contractile proteins (mainly smooth muscle myosin heavy chain-2) and an increase in p-nonmuscle actin occur, independent of both cell growth and extracellular matrix components. Thus, smooth muscle cells in 3-D extracellular matrix culture and in vivo have a similar filament architecture in which the contractile proteins such as actin, myosin, and alpha -actinin are organized into longitudinally arranged myofibrils and the vimentin-containing intermediate filaments form a meshed cytoskeletal network, However, the myofibrils reorganized in vitro contain less smooth muscle-specific and more nonmuscle contractile proteins. (C) 2001 Academic Press.
Resumo:
The discovery of periodic mesoporous MCM-41 and related molecular sieves has attracted significant attention from a fundamental as well as applied perspective. They possess well-defined cylindrical/hexagonal mesopores with a simple geometry, tailored pore size, and reproducible surface properties. Hence, there is an ever-growing scientific interest in the challenges posed by their processing and characterization and by the refinement of various sorption models. Further, MCM-41-based materials are currently under intense investigation with respect to their utility as adsorbents, catalysts, supports, ion-exchangers, and molecular hosts. In this article, we provide a critical review of the developments in these areas with particular emphasis on adsorption characteristics, progress in controlling the pore sizes, and a comparison of pore size distributions using traditional and newer models. The model proposed by the authors for adsorption isotherms and criticalities in capillary condensation and hysteresis is found to explain unusual adsorption behavior in these materials while providing a convenient characterization tool.
Resumo:
This report focuses mainly on the characterization of a Vero cell line stably expressing the flavivirus Kunjin (KUN) replicon C20SDrep (C20SDrepVero). We showed by immunofluorescence and cryoimmunoelectron microscopy that unique flavivirus-induced membrane structures, termed convoluted membranes/paracrystalline structures, were induced in the C20SDrepVero cells. These induced cytoplasmic foci were immunolabeled with KUN virus anti-NS3 antibodies and with antibodies to the cellular markers ERGIC53 (for the intermediate compartment) and protein disulfide isomerase (for the rough endoplasmic reticulum). However, in contrast to the large perinuclear inclusions observed by immunofluorescence with anti-double-stranded (ds)RNA antibodies in KUN virus-infected cells, the dsRNA in C20SDrepVero cells was localized to small isolated foci scattered throughout the cytoplasm, which were coincident with small foci dual-labeled with the trans-Golgi specific marker GaIT. importantly persistent expression of the KUN replicons in cells did not produce cytopathic effects, and the morphology of major host organelles (including Golgi, mitochondria, endoplasmic reticulum, and nucleus) was apparently unaffected. The amounts of plus- and minus-sense RNA synthesis in replicon cells were similar to those in KUN virus-infected cells until near the end of the latent period, but subsequently increases of about 10- and fourfold, respectively, occurred in infected cells. Virus-specified protein synthesis in C20SDrepVero cells was also about 10-fold greater than that in infected cells. When several KUN replicon cell lines were compared with respect to membrane induction, the relative efficiencies increased in parallel with increases in viral RNA and protein synthesis, consistent with the increases observed during the virus infectious cycle. Based on these observations, cell lines expressing less-efficient replicons may provide a useful tool to study early events in flavivirus RNA replication, which are difficult to assess in Virus infections. (C) 2001 Academic press.
Adult mouse intrinsic laryngeal muscles express high levels of the myogenic regulatory factor, MYF-5
Resumo:
The intrinsic laryngeal muscles display unique structural and functional characteristics that distinguish them from the skeletal muscle of the trunk and limbs. These features include relatively small muscle fibers, super-fast contraction speed, and fatigue resistance. The molecular basis of tissue-specific functions and other characteristics is differential gene expression. Accordingly, we have investigated the molecular basis of the functional specialization of the intrinsic laryngeal muscles by examining the expression of two key genes in the larynx, known to be important for skeletal muscle development and function: (a) the muscle regulatory factor, Myf-5, and (b) the superfast-contracting myosin heavy chain (EO-MyHC). We have found that the adult thyroarytenoid muscles express much higher levels of both Myf-5 and EO-MyHC messenger ribonucleic acid (mRNA), compared to lower hindlimb skeletal muscle where Myf-5 mRNA levels are very low and EO-MyHC is not detectable. These findings suggest that the unique functional characteristics of the intrinsic laryngeal muscles may be based in laryngeal muscle-specific gene expression directed by a unique combination of muscle regulatory factors. Such laryngeal muscle-specific genes may allow the future development of new treatments for laryngeal muscle dysfunction.
Resumo:
A model has been developed which enables the viscosities of coal ash slags to be predicted as a function of composition and temperature under reducing conditions. The model describes both completely liquid and heterogeneous, i.e. partly crystallised, slags in the Al2O3-CaO-'FeO'-SiO2 system in equilibrium with metallic iron. The Urbain formalism has been modified to describe the viscosities of the liquid slag phase over the complete range of compositions and a wide range of temperatures. The computer package F * A * C * T was used to predict the proportions of solids and the compositions of the remaining liquid phases. The Roscoe equation has been used to describe the effect of presence of solid suspension (slurry effect) on the viscosity of partly crystallised slag systems. The model provides a good description of the experimental data of fully liquid, and liquid + solids mixtures, over the complete range of compositions and a wide range of temperatures. This model can now be used for viscosity predictions in industrial slag systems. Examples of the application of the new model to coal ash fluxing and blending are given in the paper. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Single-unit electrophysiology was used to record the nerve impulses from the carbon dioxide receptors of female Queensland fruit flies, Bactrocera tryoni. The receptors responded to stimulation in a phasic-tonic manner and also had a period of inhibition of the nerve impulses after the end of stimulation, at high stimulus intensities. The cell responding to carbon dioxide was presented with a range of environmental odorants and found to respond to methyl butyrate and 2-butanone. The coding characteristics of the carbon dioxide cell and the ability to detect other odorants are discussed, with particular reference to the known behavior of the fly.
Resumo:
Applied econometricians often fail to impose economic regularity constraints in the exact form economic theory prescribes. We show how the Singular Value Decomposition (SVD) Theorem and Markov Chain Monte Carlo (MCMC) methods can be used to rigorously impose time- and firm-varying equality and inequality constraints. To illustrate the technique we estimate a system of translog input demand functions subject to all the constraints implied by economic theory, including observation-varying symmetry and concavity constraints. Results are presented in the form of characteristics of the estimated posterior distributions of functions of the parameters. Copyright (C) 2001 John Wiley Sons, Ltd.
Chronic narcotic use in inflammatory bowel disease patients: Prevalence and clinical characteristics