966 resultados para streamfunction vorticity formulation
Resumo:
Dissertação Apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Ciências da Conservação, especialização em Pintura
Resumo:
Dissertação para obtenção do Grau de Doutor em Química
Resumo:
International Conference Durable Structures: from construction to rehabilitation. Lisbon, LNEC, 31 May-1 June 2012
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
RESUMO - O planeamento dos recursos humanos em saúde é um assunto relevante na formulação de políticas, face às importantes alterações nos cuidados e necessidades, características demográficas e socioeconómicas. Este planeamento consiste na estimativa do número de profissionais necessários para se atingir determinados objetivos, existindo diferentes métodos para a sua realização. Segundo a Direção Geral de Saúde considera-se adequado um Terapeuta da Fala para 60.000 habitantes – valores calculados através de estudos de prevalência de doença. Porém, o número de recursos humanos encontra-se intimamente ligado à produtividade, determinada através de unidades de medida como os procedimentos. Nesta área, fatores como a complexidade dos doentes e trabalho indireto, podem influenciar o produto final. Neste estudo pretende-se averiguar a necessidade de recursos humanos em Terapia da Fala, analisando a atividade destes serviços nos hospitais da região de Lisboa e Vale do Tejo e aplicando a fórmula de preconização proposta pelo Ministério da Saúde, baseada num modelo de oferta. Participaram no estudo 23 Terapeutas da Fala de 9 instituições hospitalares. Foi construída uma folha de registo do trabalho diário, preenchida durante cinco dias não consecutivos, averiguando-se assim o tempo gasto nas diferentes atividades. Verificou-se que 63,21% do horário laboral é utilizado na concretização de atos diretos e 36,76% gasto em atos indiretos, relacionados com os utentes, não contabilizados na fórmula proposta. Incluindo as diferentes componentes (atos diretos e indiretos), constata-se que o número de profissionais existentes na região de Lisboa e Vale do Tejo é adequado, embora numa análise por instituição o resultado seja contraditório.
Resumo:
Restoration of Buildings and Monuments, vol. 13, nº 6 (2007), p.389-400
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
XXX IAHS World Congress on Housing - Housing Construction: An Interdisciplinary Task, September 9-13, 2002, Coimbra, Portugal
Resumo:
The action of fenthion was studied in a 15% epicutaneous formulation upon Rhipicephalus sanguineus, which may transmit pathogens to men and other animals, such as Ehrlichia, Babesia and Ricketsia. Dogs were artificially infected for the trial. The fenthion bioassays were begun four months after artificial infestation. The test group, having a mean of 186 ticks per dog, received the formulation dosage according to body weight on the neck region. Tick counts were performed, considering diameters > or = 2mm, during 11 days of treatment, in the most affected body areas: back, ears and paws. Before the application of fenthion in the dogs, it were observed an average 43.3% ticks in the ears, 38.1% in the back area and 17.6% in the paws. The number of ticks in dogs decreased by 36.2%, 63.8%, 82.7%, 67%, 40% and 4.9%, respectively on days 1, 2, 3, 5, 7, 9 and 11 after treatment. R. sanguineus anti-tick activity, lower than that officially recommended, was verified. The number of ticks increased progressively after the 5th day, demonstrating residual insecticide inefficacy. The results obtained did not indicate the use of this formulation, at the tested dosage, as an elective measure for R. sanguineus control.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
The formulation and use of lime mortars with ceramic particles has, in the past, been a very common technique. Knowledge of such used techniques and materials is fundamental for the successful rehabilitation and conservation of the built heritage. The durability that these mortars have shown encourages the study of the involved mechanisms, so that they may be adapted to the current reality. The considerable amount of waste from old ceramics factories which is sent for disposal might present an opportunity for the production of reliable improved lime mortars. In this paper a number of studies that characterize old building mortars containing ceramic fragments are reviewed. The most important research undertaken on laboratory prepared mortars with several heat treated clays types is presented, specifically with incorporated ceramic waste. Some studies on the pozzolanicity of heat treated clays are examined and the heating temperatures that seem most likely to achieve pozzolanicity are presented. It was verified that some heating temperatures currently used by ceramic industries might correspond to the temperatures that will achieve pozzolanicity.
Resumo:
Gene therapy presents an ideal strategy for the treatment of genetic as well as acquired diseases, such as cancer and typically involves the insertion of a functioning gene into cells to correct a cellular dysfunction or to provide a new cellular function. Gene delivery vectors are based in two models: viral and non-viral. Viral vectors have high transfection efficiency but their major barrier is immunogenicity. Since the non-viral vectors have no immunogenicity, these have been widely studied. Gold nanoparticles have been proposed as optimal delivery systems of genetic material, due their small size, high surface-to-volume ratio and the ability to be functionalized with multiple molecules. In the present work, an AuNP-based formulation was developed to deliver a plasmid in a colorectal cancer cell line, containing as reporter gene the gene encoding to EGFP. The delivery system resulted from the functionalization of 14 nm AuNP with a PEG layer (4300114 PEG chains/AuNP), which increases stability and biocompatibility of AuNPs; quaternary ammonium groups which provide positive charges that allow electrostatic binding of plasmid, which is considered the therapeutic agent to be transported into cells. The system developed was characterized by UV-vis spectroscopy, DLS, TEM and by electrophoretic mobility, yielding a formulation with 113.5 nm.Transfection efficiency of the formulation developed was evaluated through PCR and through EGFP expression by fluorescence microscopy and fluorescence spectroscopy. The internalization was observed 3h post transfection; however a low level of EGFP expression was achieved. After 24h of incubation, EGFP expression increases just 3 times compared to non-transfected cells. The commercial system (Lipofectamine) expressed EGFP 5 times more than the system developed AuNP@PEG@R4N+@pEGFP. This difference could be related to lower translocation to the nucleus.
Resumo:
Polymeric particulate-systems are of great relevance due to their possible biomedical applications, among them as carriers for the nano- or microencapsulation of drugs. However, due to their unique specific properties, namely small size range, toxicity issues must be discarded before allowing its use on health-related applications. Several polymers, as poly(methyl methacrylate) (PMMA), have proved to be suitable for the preparation of particulate-systems. However, a major drawback of its use refers to incomplete drug release from particles matrix. Recent strategies to improve PMMA release properties mention the inclusion of other acrylic polymers as Eudragit (EUD) on particles formulation. Though PMMA and EUD are accepted by the FDA as biocompatible, their safety on particle composition lacks sufficient toxicological data. The main objective of this thesis was to evaluate the biological effects of engineered acrylic particulate-systems. Preparation, physicochemical characterization and in vitro toxicity evaluation were assessed on PMMA and PMMA-EUD (50:50) particles. The emulsification-solvent evaporation methodology allowed the preparation of particles with spherical and smooth surfaces within the micrometer range (±500 nm), opposing surface charges and different levels of hydrophobicity. It was observed that particles physicochemical properties (size and charge) were influenced by biological media composition, such as serum concentration, ionic strength or pH. In what concerns to the in vitro toxicological studies, particle cellular uptake was observed on different cell lines (macrophages, osteoblasts and fibroblasts). Cytotoxicity effects were only found after 72 h of cells exposure to the particles, while no oxidative damage was observed neither on osteoblasts nor fibroblasts. Also, no genotoxicity was found in fibroblast using the comet assay to assess DNA damage. This observation should be further confirmed with other validated genotoxicity assays (e.g. Micronucleus Assay). The present study suggests that the evaluated acrylic particles are biocompatible, showing promising biological properties for potential use as carriers in drug-delivery systems.
Resumo:
Due to their high adsorption capacity of water vapor, earthen plasters can act as a moisture buffer, contributing to balance the relative humidity of the indoor environment of buildings. As a consequence of this capacity earthen plasters may also contribute to the perception of thermal comfort, since a high relative humidity increases the thermal conductivity of air and restricts skin evaporation, increasing the discomfort associated with the perception of heat or cold. Simultaneously, earthen plasters may also contribute to the indoor air quality. In one hand, by mitigating health problems of the respiratory system associated with indoor environment with high relative humidity, in which increases the risk of development of microorganisms usually responsible for infections, allergies or asthma. In the other hand, by mitigating the probability of inflammation of the respiratory system airways associated to exceedingly dry indoor environments. Therefore it also becomes expectable that earthen plasters may contribute for reducing the needs for air conditioning and mechanical ventilation in buildings and, thereby, also allowing the reduction of the associated energy consumption. The «Barrocal» region, located in the sedimentary basin of Algarve, South Portugal, presents geomorphological characteristics that promote the occurrence of soils with a clay mineralogy dominated by illite, which is a clay mineral characterized by a high adsorption capacity of water vapor and low expansibility. This fact turns expectable that these soils have a high potential for interior plastering. In order to evaluate this potential four mortars were formulated with an increasing content of clayey soil extracted from a selected clay quarry from «Barrocal» region. The results from the preliminary characterization campaign confirmed the reduced linear shrinkage of these mortars, as well as their high adsorption-desorption capacity, that is positively correlated with the content of clayey soil present in mortar formulation. However, the mechanical tests showed that the mechanical resistance of these mortars should be improved, for instance through the addition of natural fibers for reinforcement, which will be investigated in future research. This research contributed to increase certainty regarding the potential of clayey soils of the «Barrocal» sub-region of Algarve to produce mortars suitable for eco-efficient interior plastering.
Resumo:
Ionic Liquids (ILs) are class of compounds, which have become popular since the mid-1990s. Despite the fact that ILs are defined by one physical property (melting point), many of the potential applications are now related to their biological properties. The use of a drug as a liquid can avoid some problems related to polymorphism which can influence a drug´s solubility and thus its dosages. Also, the arrangement of the anion or cation with a specific drug might be relevant in order to: a) change the correspondent biopharmaceutical drug classification system; b) for the drug formulation process and c) the change the Active Pharmaceutical Ingredients’ (APIs). The main goal of this Thesis is the synthesis and study of physicochemical and biological properties of ILs as APIs from beta-lactam antibiotics (ampicillin, penicillin G and amoxicillin) and from the anti-fungal Amphotericin B. All the APIs used here were neutralized in a buffer appropriate hydroxide cations. The cation hydroxide was obtained on Amberlite resin (in the OH form) in order to exchange halides. The biological studies of these new compounds were made using techniques like the micro dilution and colorimetric methods. Overall a total of 19 new ILs were synthesised (6 ILs based on ampicillin, 4 ILs, based on amoxicillin, 6 ILs based on penicillin G and 4 ILs based on amphotericin B) and characterized by spectroscopic and analytical methods in order to confirm their structure and purity. The study of the biological properties of the synthesised ILs showed that some have antimicrobial activity against bacteria and yeast cells, even in resistant bacteria. Also this work allowed to show that ILs based on ampicillin could be used as anti-tumour agents. This proves that with a careful selection of the organic cation, it is possible to provoke important physico-chemical and biological alteration in the properties of ILs-APIs with great impact, having in mind their applications.