926 resultados para storage tank


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two experiments were conducted to determine the influence of duration of storage of soybean meal (SBM) on variables that define the quality of the protein fraction. Urease activity, protein dispersibility index (PDI), KOH protein solubility (KOHsol), and trypsin inhibitor activity were determined. In experiment 1, 8 samples of SBM, ranging in CP content from 55.4 to 56.5% DM, were collected from a US crushing plant at weekly intervals and analyzed at arrival to the laboratory and after 30, 60, 90, and 120 d of storage. In experiment 2, 7 samples of SBM, ranging in CP content from 49.0 to 55.0% DM, were collected from different Argentinean crushers and analyzed at arrival and after 24, 48, 80, and 136 wk of storage. In both experiments, samples were stored in hermetic glass containers in a laboratory room at 12 ± 2°C and a relative humidity of 70 ± 3%. Duration of storage did not affect urease activity or trypsin inhibitor activity values in either of the 2 experiments. However, PDI values decreased linearly with time of storage in both experiments (P menor que 0.001). Also, KOHsol decreased linearly (P menor que 0.05) with duration of storage in experiment 2 (long-term storage) but not in experiment 1(shorter term storage). Therefore, PDI values might not be adequate to compare protein quality of commercial SBM samples that have been stored for different periods of time. The KOHsol values are less affected by length of storage of the meals under current commercial practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study on a water- ow window installed in a test box is presented. This window is composed of two glass panes separated by a chamber through water ows. The ow of water comes from an isolated tank which contains heat water. In order to fully evaluate the water- ow window performance for different room and window sizes, locations and weather conditions, a mathematical model of the whole box is needed. The proposed model, in which conduction heat transfer mechanism is the only considered, is one dimensional and unsteady based upon test box energy balance. The effect of the heat water tank, which feeds the water- ow window, is included in the model by means of a time delay in the source term. Although some previous work about moving uid chamber has been developed, air was used as heat transfer uid and no uid storage was considered. Finally a comparison between the numerical solution and the obtained experimental data is done.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decision to select the most suitable type of energy storage system for an electric vehicle is always difficult, since many conditionings must be taken into account. Sometimes, this study can be made by means of complex mathematical models which represent the behavior of a battery, ultracapacitor or some other devices. However, these models are usually too dependent on parameters that are not easily available, which usually results in nonrealistic results. Besides, the more accurate the model, the more specific it needs to be, which becomes an issue when comparing systems of different nature. This paper proposes a practical methodology to compare different energy storage technologies. This is done by means of a linear approach of an equivalent circuit based on laboratory tests. Via these tests, the internal resistance and the self-discharge rate are evaluated, making it possible to compare different energy storage systems regardless their technology. Rather simple testing equipment is sufficient to give a comparative idea of the differences between each system, concerning issues such as efficiency, heating and self-discharge, when operating under a certain scenario. The proposed methodology is applied to four energy storage systems of different nature for the sake of illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In coffee processing the fermentation stage is considered one of the critical operations by its impact on the final quality of the product. However, the level of control of the fermentation process on each farm is often not adequate; the use of sensorics for controlling coffee fermentation is not common. The objective of this work is to characterize the fermentation temperature in a fermentation tank by applying spatial interpolation and a new methodology of data analysis based on phase space diagrams of temperature data, collected by means of multi-distributed, low cost and autonomous wireless sensors. A real coffee fermentation was supervised in the Cauca region (Colombia) with a network of 24 semi-passive TurboTag RFID temperature loggers with vacuum plastic cover, submerged directly in the fermenting mass. Temporal evolution and spatial distribution of temperature is described in terms of the phase diagram areas which characterizes the cyclic behaviour of temperature and highlights the significant heterogeneity of thermal conditions at different locations in the tank where the average temperature of the fermentation was 21.2 °C, although there were temperature ranges of 4.6°C, and average spatial standard deviation of ±1.21ºC. In the upper part of the tank we found high heterogeneity of temperatures, the higher temperatures and therefore the higher fermentation rates. While at the bottom, it has been computed an area in the phase diagram practically half of the area occupied by the sensors of the upper tank, therefore this location showed higher temperature homogeneity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundación Ciudad de la Energía (CIUDEN) is carrying out a project of geological storage of CO2, where CO2 injection tests are planned in saline aquifers at a depth of 1500 m for scientific objectives and project demonstration. Before any CO2 is stored, it is necessary to determine the baseline flux of CO2 in order to detect potential leakage during injection and post-injection monitoring. In November 2009 diffuse flux measurements of CO2 using an accumulation chamber were made in the area selected by CIUDEN for geological storage, located in Hontomin province of Burgos (Spain). This paper presents the tests carried out in order to establish the optimum sampling methodology and the geostatistical analyses performed to determine the range, with which future field campaigns will be planned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report analyzes the basis of hydrogen and power integration strategies, by using water electrolysis processes as a means of flexible energy storage at large scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-term variability in the power generated by large grid-connected photovoltaic (PV) plants can negatively affect power quality and the network reliability. New grid-codes require combining the PV generator with some form of energy storage technology in order to reduce short-term PV power fluctuation. This paper proposes an effective method in order to calculate, for any PV plant size and maximum allowable ramp-rate, the maximum power and the minimum energy storage requirements alike. The general validity of this method is corroborated with extensive simulation exercises performed with real 5-s one year data of 500 kW inverters at the 38.5 MW Amaraleja (Portugal) PV plant and two other PV plants located in Navarra (Spain), at a distance of more than 660 km from Amaraleja.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its excellent mechanical, termal, optical and electrical properties, graphene has recently attracted increasing attention. It provides a huge surface area (2630m2 g-1) and high electrical conductivity, making it an attractive material for applications in energy-storage systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pig’s slurry is a key source of greenhouse gases (GHG). In Spain, GHG emissions (CH4+ N2O) from pig slurry (storage and land application) accounted in 2011 for 18.4% of total GHG emissions (in CO2- equivalent) of the agriculture sector according to the National Inventory Report (NIR). Slurry composition can be modified through diet manipulation. The aim of this work was to evaluate the effect of different fibre types in fattening pigs’ diets on GHG emissions from pig slurry storage and field application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive farm systems handle large volume of livestock wastes, resulting in adverse environmental effects, such as gaseous losses into the atmosphere in form of ammonia (NH3) and greenhouse gases (GHG), i.e. methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O). In this study, the manure management continuum of slurry storage with impermeable cover and following cattle slurry band spreading and incorporation to soil was assessed for NH3 and GHG emissions. The experiment was conducted in an outdoor covered storage (flexible bag system) (study I), which collected the slurry produced in 7 dairy cattle farms (2,000 m3 slurry) during 12 days in the northern Spain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micrometeorological mass-balance integrated horizontal flux (IHF) technique has been commonly employed for measuring ammonia (NH3) emissions inon-field experiments. However, the inverse-dispersion modeling technique, such as the backward Lagrangian stochastic (bLS) modeling approach, is currently highlighted as offering flexibility in plot design and requiring a minimum number of samplers (Ro et al., 2013). The objective of this study was to make a comparison between the bLS technique with the IHF technique for estimating NH3 emission from flexible bag storage and following landspreading of dairy cattle slurry. Moreover, considering that NH3 emission in storage could have been non uniform, the effect on bLS estimates of a single point and multiple downwind concentration measurements was tested, as proposed by Sanz et al. (2010).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fermentation stage is considered to be one of the critical steps in coffee processing due to its impact on the final quality of the product. The objective of this work is to characterise the temperature gradients in a fermentation tank by multi-distributed, low-cost and autonomous wireless sensors (23 semi-passive TurboTag® radio-frequency identifier (RFID) temperature loggers). Spatial interpolation in polar coordinates and an innovative methodology based on phase space diagrams are used. A real coffee fermentation process was supervised in the Cauca region (Colombia) with sensors submerged directly in the fermenting mass, leading to a 4.6 °C temperature range within the fermentation process. Spatial interpolation shows a maximum instant radial temperature gradient of 0.1 °C/cm from the centre to the perimeter of the tank and a vertical temperature gradient of 0.25 °C/cm for sensors with equal polar coordinates. The combination of spatial interpolation and phase space graphs consistently enables the identification of five local behaviours during fermentation (hot and cold spots).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este proyecto se elabora la ingeniería básica de un sistema de almacenamiento térmico para la central termosolar Astexol 2 (Badajoz, España). Para ello, primeramente se decidió que el sistema térmico de almacenamiento a diseñar fuera indirecto de dos tanques con sales fundidas. Una vez seleccionado el tipo de almacenamiento adecuado, se seleccionó la capacidad de almacenamiento óptima, en base a unos objetivos establecidos para la instalación del TES en Astexol 2. Finalmente, se procedió con el diseño de los equipos principales y con la realización de los planos de implantación y de los PFD’s (diagramas de flujo) y P&ID’s (diagramas de instrumentación y control) del sistema de almacenamiento. ABSTRACT This project includes the basic engineering of a thermal storage system for the concentrating solar power plant Astexol 2 (Badajoz, Spain). First of all, it was decided that the type of thermal storage system to design had to be an indirect two-tank molten salt thermal storage system. Once the proper type of storage system was chosen, the optimum storage capacity was selected, according to the main aims designated for the thermal storage system installation in Astexol 2.Finally, the design of the main equipment of the thermal storage system was done, together with the elaboration of the associated plot plans, PFD’s (Process Flow Diagrams) and P&ID’s (Process and Instrumentation Diagrams).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En hidrodinámica, el fenómeno de Sloshing se puede definir como el movimiento de la superficie libre de un fluido dentro de un contenedor sometido a fuerzas y perturbaciones externas. El fluido en cuestión experimenta violentos movimientos con importantes deformaciones de su superficie libre. La dinámica del fluido puede llegar a generar cargas hidrodinámicas considerables las cuales pueden afectar la integridad estructural y/o comprometer la estabilidad del vehículo que transporta dicho contenedor. El fenómeno de Sloshing ha sido extensivamente investigado matemática, numérica y experimentalmente, siendo el enfoque experimental el más usado debido a la complejidad del problema, para el cual los modelos matemáticos y de simulación son aun incapaces de predecir con suficiente rapidez y precisión las cargas debidas a dicho fenómeno. El flujo generado por el Sloshing usualmente se caracteriza por la presencia de un fluido multifase (gas-liquido) y turbulencia. Reducir al máximo posible la complejidad del fenómeno de Sloshing sin perder la esencia del problema es el principal reto de esta tesis doctoral, donde un trabajo experimental enfocado en casos canónicos de Sloshing es presentado y documentado con el objetivo de aumentar la comprensión de dicho fenómeno y por tanto intentar proveer información valiosa para validaciones de códigos numéricos. El fenómeno de Sloshing juega un papel importante en la industria del transporte marítimo de gas licuado (LNG). El mercado de LNG en los últimos años ha reportado un crecimiento hasta tres veces mayor al de los mercados de petróleo y gas convencionales. Ingenieros en laboratorios de investigación e ingenieros adscritos a la industria del LNG trabajan continuamente buscando soluciones económicas y seguras para contener, transferir y transportar grandes volúmenes de LNG. Los buques transportadores de LNG (LNGC) han pasado de ser unos pocos buques con capacidad de 75000 m3 hace unos treinta años, a una amplia flota con una capacidad de 140000 m3 actualmente. En creciente número, hoy día se construyen buques con capacidades que oscilan entre 175000 m3 y 250000 m3. Recientemente un nuevo concepto de buque LNG ha salido al mercado y se le conoce como FLNG. Un FLNG es un buque de gran valor añadido que solventa los problemas de extracción, licuefacción y almacenamiento del LNG, ya que cuenta con equipos de extracción y licuefacción a bordo, eliminando por tanto las tareas de transvase de las estaciones de licuefacción en tierra hacia los buques LNGC. EL LNG por tanto puede ser transferido directamente desde el FLNG hacia los buques LNGC en mar abierto. Niveles de llenado intermedios en combinación con oleaje durante las operaciones de trasvase inducen movimientos en los buques que generan por tanto el fenómeno de Sloshing dentro de los tanques de los FLNG y los LNGC. El trabajo de esta tesis doctoral lidia con algunos de los problemas del Sloshing desde un punto de vista experimental y estadístico, para ello una serie de tareas, descritas a continuación, se han llevado a cabo : 1. Un dispositivo experimental de Sloshing ha sido configurado. Dicho dispositivo ha permitido ensayar secciones rectangulares de tanques LNGC a escala con movimientos angulares de un grado de libertad. El dispositivo experimental ha sido instrumentado para realizar mediciones de movimiento, presiones, vibraciones y temperatura, así como la grabación de imágenes y videos. 2. Los impactos de olas generadas dentro de una sección rectangular de un LNGC sujeto a movimientos regulares forzados han sido estudiados mediante la caracterización del fenómeno desde un punto de vista estadístico enfocado en la repetitividad y la ergodicidad del problema. 3. El estudio de los impactos provocados por movimientos regulares ha sido extendido a un escenario más realístico mediante el uso de movimientos irregulares forzados. 4. El acoplamiento del Sloshing generado por el fluido en movimiento dentro del tanque LNGC y la disipación de la energía mecánica de un sistema no forzado de un grado de libertad (movimiento angular) sujeto a una excitación externa ha sido investigado. 5. En la última sección de esta tesis doctoral, la interacción entre el Sloshing generado dentro en una sección rectangular de un tanque LNGC sujeto a una excitación regular y un cuerpo elástico solidario al tanque ha sido estudiado. Dicho estudio corresponde a un problema de interacción fluido-estructura. Abstract In hydrodynamics, we refer to sloshing as the motion of liquids in containers subjected to external forces with large free-surface deformations. The liquid motion dynamics can generate loads which may affect the structural integrity of the container and the stability of the vehicle that carries such container. The prediction of these dynamic loads is a major challenge for engineers around the world working on the design of both the container and the vehicle. The sloshing phenomenon has been extensively investigated mathematically, numerically and experimentally. The latter has been the most fruitful so far, due to the complexity of the problem, for which the numerical and mathematical models are still incapable of accurately predicting the sloshing loads. The sloshing flows are usually characterised by the presence of multiphase interaction and turbulence. Reducing as much as possible the complexity of the sloshing problem without losing its essence is the main challenge of this phd thesis, where experimental work on selected canonical cases are presented and documented in order to better understand the phenomenon and to serve, in some cases, as an useful information for numerical validations. Liquid sloshing plays a key roll in the liquified natural gas (LNG) maritime transportation. The LNG market growth is more than three times the rated growth of the oil and traditional gas markets. Engineers working in research laboratories and companies are continuously looking for efficient and safe ways for containing, transferring and transporting the liquified gas. LNG carrying vessels (LNGC) have evolved from a few 75000 m3 vessels thirty years ago to a huge fleet of ships with a capacity of 140000 m3 nowadays and increasing number of 175000 m3 and 250000 m3 units. The concept of FLNG (Floating Liquified Natural Gas) has appeared recently. A FLNG unit is a high value-added vessel which can solve the problems of production, treatment, liquefaction and storage of the LNG because the vessel is equipped with a extraction and liquefaction facility. The LNG is transferred from the FLNG to the LNGC in open sea. The combination of partial fillings and wave induced motions may generate sloshing flows inside both the LNGC and the FLNG tanks. This work has dealt with sloshing problems from a experimental and statistical point of view. A series of tasks have been carried out: 1. A sloshing rig has been set up. It allows for testing tanks with one degree of freedom angular motion. The rig has been instrumented to measure motions, pressure and conduct video and image recording. 2. Regular motion impacts inside a rectangular section LNGC tank model have been studied, with forced motion tests, in order to characterise the phenomenon from a statistical point of view by assessing the repeatability and practical ergodicity of the problem. 3. The regular motion analysis has been extended to an irregular motion framework in order to reproduce more realistic scenarios. 4. The coupled motion of a single degree of freedom angular motion system excited by an external moment and affected by the fluid moment and the mechanical energy dissipation induced by sloshing inside the tank has been investigated. 5. The last task of the thesis has been to conduct an experimental investigation focused on the strong interaction between a sloshing flow in a rectangular section of a LNGC tank subjected to regular excitation and an elastic body clamped to the tank. It is thus a fluid structure interaction problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy storage at low maintenance cost is one of the key challenges for generating electricity from the solar energy. This paper presents the theoretical analysis (verified by CFD) of the night time performance of a recently proposed conceptual system that integrates thermal storage (via phase change materials) and thermophotovoltaics for power generation. These storage integrated solar thermophotovoltaic (SISTPV) systems are attractive owing to their simple design (no moving parts) and modularity compared to conventional Concentrated Solar Power (CSP) technologies. Importantly, the ability of high temperature operation of these systems allows the use of silicon (melting point of 1680 K) as the phase change material (PCM). Silicon's very high latent heat of fusion of 1800 kJ/kg and low cost ($1.70/kg), makes it an ideal heat storage medium enabling for an extremely high storage energy density and low weight modular systems. In this paper, the night time operation of the SISTPV system optimised for steady state is analysed. The results indicate that for any given PCM length, a combination of small taper ratio and large inlet hole-to-absorber area ratio are essential to increase the operation time and the average power produced during the night time. Additionally, the overall results show that there is a trade-off between running time and the average power produced during the night time. Average night time power densities as high as 30 W/cm(2) are possible if the system is designed with a small PCM length (10 cm) to operate just a few hours after sun-set, but running times longer than 72 h (3 days) are possible for larger lengths (50 cm) at the expense of a lower average power density of about 14 W/cm(2). In both cases the steady state system efficiency has been predicted to be about 30%. This makes SISTPV systems to be a versatile solution that can be adapted for operation in a broad range of locations with different climate conditions, even being used off-grid and in space applications.