937 resultados para starch hydrolysis
Resumo:
The chb operon of Escherichia coli is involved in the utilization of the beta-glucosides chitobiose and cellobiose. The function of chbG (ydjC), the sixth open reading frame of the operon that codes for an evolutionarily conserved protein is unknown. We show that chbG encodes a monodeacetylase that is essential for growth on the acetylated chitooligosaccharides chitobiose and chitotriose but is dispensable for growth on cellobiose and chitosan dimer, the deacetylated form of chitobiose. The predicted active site of the enzyme was validated by demonstrating loss of function upon substitution of its putative metal-binding residues that are conserved across the YdjC family of proteins. We show that activation of the chb promoter by the regulatory protein ChbR is dependent on ChbG, suggesting that deacetylation of chitobiose-6-P and chitotriose-6-P is necessary for their recognition by ChbR as inducers. Strains carrying mutations in chbR conferring the ability to grow on both cellobiose and chitobiose are independent of chbG function for induction, suggesting that gain of function mutations in ChbR allow it to recognize the acetylated form of the oligosaccharides. ChbR-independent expression of the permease and phospho-beta-glucosidase from a heterologous promoter did not support growth on both chitobiose and chitotriose in the absence of chbG, suggesting an additional role of chbG in the hydrolysis of chitooligosaccharides. The homologs of chbG in metazoans have been implicated in development and inflammatory diseases of the intestine, indicating that understanding the function of E. coli chbG has a broader significance.
Resumo:
Mass spectrometric analysis of a banyan endophyte, Bacillus subtilis K1, extract showing broad spectrum antifungal activity revealed a complex mixture of lipopeptides, iturins, surfactins, and fengycins. Fractionation by reversed-phase high performance liquid chromatography (HPLC) facilitated a detailed analysis of fengycin microheterogeneity. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric studies permitted the identification of several new fengycin variants. Four major sites of heterogeneity are identified: (1) N-terminus beta-hydroxy fatty acid moiety, where chain length variation and the presence of unsaturation occur, (2) position 6 (Ala/Val/Ile/Leu), (3) position 10 (Val/Ile) within the macrocyclic ring, and (4) Gln to Glu replacement at position 8, resulting in fengycin variants that differ in mass by 1 Da. Diagnostic fragment ions provide a quick method for localizing the sites of variation in the macrocycle or the linear segment. Subsequent establishment of the sequences is achieved by MS/MS analysis of linear fengycin species produced by hydrolysis of the macrocyclic lactone. Unsaturation in the fatty acid chain and the presence of linear precursors in the B. subtilis K1 extract are also established by mass spectrometry. The anomalous distribution of intensities within isotopic multiplets is a diagnostic for Gln/Glu replacements. High resolution mass spectrometry facilitates the identification of fengycin species differing by 1 Da by localizing the variable position (Gln(8)/Glu(8)) in the fengycin variants.
Resumo:
A series of macrobicyclic dizinc(II) complexes Zn2L1-2B](ClO4)(4) (1-6) have been synthesized and characterized (L1-2 are polyaza macrobicyclic binucleating ligands, and B is the N,N-donor heterocyclic base (viz. 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)). The DNA and protein binding, DNA hydrolysis and anticancer activity of these complexes were investigated. The interactions of complexes 1-6 with calf thymus DNA were studied by spectroscopic techniques, including absorption, fluorescence and CD spectroscopy. The DNA binding constant values of the complexes were found to range from 2.80 x 10(5) to 5.25 x 10(5) M-1, and the binding affinities are in the following order: 3 > 6 > 2 > 5 > 1 > 4. All the dizinc(II) complexes 1-6 are found to effectively promote the hydrolytic cleavage of plasmid pBR322 DNA under anaerobic and aerobic conditions. Kinetic data for DNA hydrolysis promoted by 3 and 6 under physiological conditions give observed rate constants (k(obs)) of 5.56 +/- 0.1 and 5.12 +/- 0.2 h(-1), respectively, showing a 10(7)-fold rate acceleration over the uncatalyzed reaction of dsDNA. Remarkably, the macrobicyclic dizinc(II) complexes 1-6 bind and cleave bovine serum albumin (BSA), and effectively promote the caspase-3 and caspase-9 dependent deaths of HeLa and BeWo cancer cells. The cytotoxicity of the complexes was further confirmed by lactate dehydrogenase enzyme levels in cancer cell lysate and content media.
Resumo:
Treatment of the chloro-substituted diboradiferrocene derivative 1 with Me3SiOMe and subsequent hydrolysis resulted in formation of the novel organometallic bis(borinic acid) derivative 3. The assembly of 3 into supramolecular structures via hydrogen bonding and reversible covalent boron-oxygen bond formation was explored. Upon crystallization from acetone or THF one-dimensional chains form in which molecules of 3 alternately serve as hydrogen bond donors and acceptors. The additional OH hydrogens that are not involved in hydrogen bonding within the polymeric chains undergo hydrogen bonding to the solvent molecules. Removal of the solvent was achieved at moderate temperature under high vacuum. While the polymeric chains remain intact, in the absence of the solvent as a hydrogen bond acceptor, short contacts to the Cp rings of neighboring polymer strands lead to a network-like structure. At higher temperatures, further dehydration occurs with formation of B-O-B linkages as confirmed by MALDI-TOF mass spectrometry. Oligomers with up to 15 repeating units (30 ferrocenes) were detected.
Resumo:
Large numbers of Plasmodium genes have been predicted to have introns. However, little information exists on the splicing mechanisms in this organism. Here, we describe the DExD/DExH-box containing Pre-mRNA processing proteins (Prps), PfPrp2p, PfPrp5p, PfPrp16p, PfPrp22p, PfPrp28p, PfPrp43p and PfBrr2p, present in the Plasmodium falciparum genome and characterized the role of one of these factors, PfPrp16p. It is a member of DEAH-box protein family with nine collinear sequence motifs, a characteristic of helicase proteins. Experiments with the recombinantly expressed and purified PfPrp16 helicase domain revealed binding to RNA, hydrolysis of ATP as well as catalytic helicase activities. Expression of helicase domain with the C-terminal helicase-associated domain (HA2) reduced these activities considerably, indicating that the helicase-associated domain may regulate the PfPrp16 function. Localization studies with the PfPrp16 GFP transgenic lines suggested a role of its N-terminal domain (1-80 amino acids) in nuclear targeting. Immunodepletion of PfPrp16p, from nuclear extracts of parasite cultures, blocked the second catalytic step of an in vitro constituted splicing reaction suggesting a role for PfPrp16p in splicing catalysis. Further we show by complementation assay in yeast that a chimeric yeast-Plasmodium Prp16 protein, not the full length PfPrp16, can rescue the yeast prp16 temperature-sensitive mutant. These results suggest that although the role of Prp16p in catalytic step II is highly conserved among Plasmodium, human and yeast, subtle differences exist with regards to its associated factors or its assembly with spliceosomes. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report here the synthesis and characterization of a few phenolate-based ligands bearing tert- amino substituent and their Zn(II) and Cu(II) metal complexes. Three mono/binuclear Zn(II) and Cu(II) complexes Zn(L1)(H2O)].CH3OH.H2O (1) (H (2) L1 = 6,6(')-(((2-dimethylamino)ethylazanediyl)bis(methylene))bis(2, 4-dimethylphenol), Zn-2(L2)(2)] (2) (H (2) L2 = 2,2(')-(((2-dimethylamino)ethyl)azanediyl)bis(methylene)bis(4- methylphenol) and Cu-2(L3)(2).CH2 Cl-2] (3) (H (2) L3 = (6,6(')-(((2-(diethylamino)ethyl)azanediyl)bis(methylene)) bis(methylene))bis(2,4-dimethylphenol) were synthesized by using three symmetrical tetradendate ligands containing N2O2 donor sites. These complexes are characterized by a variety of techniques including; elemental analysis, mass spectrometry, H-1, C-13 NMR spectroscopic and single crystal X-ray analysis. The new complexes have been tested for the phosphotriesterase (PTE) activity with the help of P-31 NMR spectroscopy. The P-31 NMR studies show that mononuclear complex Zn(L1)(H2O)].CH3OH.H2O (1) can hydrolyse the phosphotriester i.e., p-nitrophenyl diphenylphosphate (PNPDPP), more efficiently than the binuclear complexes Zn-2(L2)(2)] (2) and Cu-2(L3)(2).CH2Cl2] (3). The mononuclear Zn(II) complex (1) having one coordinated water molecule exhibits significant PTE activity which may be due to the generation of a Zn(II)-bound hydroxide ion during the hydrolysis reactions in CHES buffer at pH 9.0.
Resumo:
Ferric uptake regulator (Fur) is a transcriptional regulator controlling the expression of genes involved in iron homeostasis and plays an important role in pathogenesis. Fur-regulated sRNAs/CDSs were found to have upstream Fur Binding Sites (FBS). We have constructed a Positional Weight Matrix from 100 known FBS (19 nt) and tracked the `Orphan' FBSs. Possible Fur regulated sRNAs and CDSs were identified by comparing their genomic locations with the `Orphan' FBSs identified. Thirty-eight `novel' and all known Fur regulated sRNAs in nine proteobacteria were identified. In addition, we identified high scoring FBSs in the promoter regions of the 304 CDSs and 68 of them were involved in siderophore biosynthesis, iron-transporters, two-component system, starch/sugar metabolism, sulphur/methane metabolism, etc. The present study shows that the Fur regulator controls the expression of genes involved in diverse metabolic activities and it is not limited to iron metabolism alone. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Cotton leaf curl Kokhran Virus-Dabawali (CLCuKV-Dab) is a monopartite begomovirus encoding two proteins V1 and V2 in the virion sense and four proteins Cl, C2, C3 and C4 in the complementary sense. The C4 protein of monopartite begomoviruses has been implicated to play a role in symptom determination and virus movement. The present work aims at the biochemical characterization of this protein. Methods: The C4 protein of CLCuKV-Dab was purified in fusion with GST and tested for the ability to hydrolyze ATP and other phosphate containing compounds. ATPase activity was assayed by using radiolabeled gamma-32P]-ATP and separating the product of reaction by thin layer chromatography. The hydrolysis of other compounds was monitored by the formation of a blue colored phosphomolybdate complex which was estimated by measuring the absorbance at 655 nm. Results: The purified GST-C4 protein exhibited metal ion dependent ATPase and inorganic pyrophosphatase activities. Deletion of a sequence resembling the catalytic motif present in phosphotyrosine phosphatases resulted in 70% reduction in both the activities. Mutational analysis suggested arginine 13 to be catalytically important for the ATPase and cysteine 8 for the pyrophosphatase activity of GST-C4. Interaction of V2 with GST-C4 resulted in an increase in both the enzymatic activities of GST-C4. Conclusions: The residues important for the enzymatic activities of GST-C4 are present in a motif different from the classical Walker motifs and the non-classical ATP binding motifs reported so far. General significance: The C4 protein of CLCuKV-Dab, a putative natively unfolded protein, exhibits enzymatic activities.
Resumo:
Cotton is a widely used raw material for textiles but drawbacks regarding their poor mechanical properties often limit their applications as functional materials. The present investigation involved process development for one step coating of cotton with silver nanoparticles (SNP) synthesized using Azadirachta indica and Citrus limon extract to develop functional textiles. Addition of starch to functional textiles led to efficient binding of nanoparticles to fabric and led to drastic decrease in release of silver from fabricated textiles after ten washing cycles enhancing their environment friendliness. Differential scanning calorimetry, scanning electron microscopy, FT-IR analysis and mechanical studies demonstrated efficient binding of nanoparticles to fabric through bio-based processes. The functionalized textiles developed by the bio-based methods showed significant antibacterial activity against E. coli and S. aureus (with 99% microbial reduction). Present work offers a simple procedure for coating SNP using bio-based approaches with promising applications in specialized functions.
Resumo:
Proofreading/editing in protein synthesis is essential for accurate translation of information from the genetic code. In this article we present a theoretical investigation of efficiency of a kinetic proofreading mechanism that employs hydrolysis of the wrong substrate as the discriminatory step in enzyme catalytic reactions. We consider aminoacylation of tRNA(Ile) which is a crucial step in protein synthesis and for which experimental results are now available. We present an augmented kinetic scheme and then employ methods of stochastic simulation algorithm to obtain time dependent concentrations of different substances involved in the reaction and their rates of formation. We obtain the rates of product formation and ATP hydrolysis for both correct and wrong substrates (isoleucine and valine in our case, respectively), in single molecular enzyme as well as ensemble enzyme kinetics. The present theoretical scheme correctly reproduces (i) the amplitude of the discrimination factor in the overall rates between isoleucine and valine which is obtained as (1.8x10(2)).(4.33x10(2)) = 7.8x10(4), (ii) the rates of ATP hydrolysis for both Ile and Val at different substrate concentrations in the aminoacylation of tRNA(Ile). The present study shows a non-michaelis type dependence of rate of reaction on tRNA(Ile) concentration in case of valine. The overall editing in steady state is found to be independent of amino acid concentration. Interestingly, the computed ATP hydrolysis rate for valine at high substrate concentration is same as the rate of formation of Ile-tRNA(Ile) whereas at intermediate substrate concentration the ATP hydrolysis rate is relatively low. We find that the presence of additional editing domain in class I editing enzyme makes the kinetic proofreading more efficient through enhanced hydrolysis of wrong product at the editing CP1 domain.
Resumo:
Water soluble dinickel(II) complexes Ni-2(L)(2)(1-2)](NO3)(4) (1-2), where L1-2 are triazole based dinucleating ligands, were synthesized and characterized. The DNA binding, protein binding, DNA hydrolysis and anticancer properties were investigated. The interactions of complexes 1 and 2 with calf thymus DNA were studied by spectroscopic techniques, including absorption and fluorescence spectroscopy. The DNA binding constant values of the complexes 1 and 2 were found to be 2.36 x 10(5) and 4.87 x 10(5) M-1 and the binding affinities are in the following order: 2 > 1. Both the dinickel(II) complexes 1 and 2, promoted the hydrolytic cleavage of plasmid pBR322 DNA under both anaerobic and aerobic conditions. Kinetic data for DNA hydrolysis promoted by 1 and 2 under physiological conditions give the observed rate constants (k(obs)) of 5.05 +/- 0.2 and 5.65 +/- 0.1 h(-1), respectively, which shows 10(8)-fold rate acceleration over the uncatalyzed reaction of ds-DNA. Meanwhile, the interactions of the complex with BSA have also been studied by spectroscopy. Both the complexes 1 and 2 display strong binding propensity and the binding constant (K-b), number of binding sites (n) were obtained are 0.71 x 10(6) 1.47] and 5.62 x 10(6) 1.98] M-1, respectively. The complexes 1 and 2 also promoted the apoptosis against human carcinoma (HeLa, and BeWo) cancer cells. Cytotoxicity of the complexes was further confirmed by lactate dehydrogenase enzyme level in cancer cell lysate and content media. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The detection of contaminated food in every stage of processing required new technology for fast identification and isolation of toxicity in food. Since effect of food contaminant are severe to human health, the need of pioneer technologies also increasing over last few decades. In the current study, MDA was prepared by hydrolysis of 1,1,3,3-tetramethoxypropane in HCl media and used in the electrochemical studies. The electrochemical sensor was fabricated with modified glassy carbon electrode with polyaniline. These sensors were used for detection of sodium salt of malonaldehyde and observed that a high sensitivity in the concentration range similar to 1 x 10(-1) M and 1 x 10(-2) M. Tafel plots show the variation of over potential from -1.73 V to -3.74 V up to 10(-5) mol/L indicating the lower limit of detection of the system. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.
Resumo:
Cytosolic nucleotidase II (cN-II) from Legionellapneumophila (Lp) catalyzes the hydrolysis of GMP and dGMP displaying sigmoidal curves, whereas catalysis of IMP hydrolysis displayed a biphasic curve in the initial rate versus substrate concentration plots. Allosteric modulators of mammalian cN-II did not activate LpcN-II although GTP, GDP and the substrate GMP were specific activators. Crystal structures of the tetrameric LpcN-II revealed an activator-binding site at the dimer interface. A double mutation in this allosteric-binding site abolished activation, confirming the structural observations. The substrate GMP acting as an activator, partitioning between the allosteric and active site, is the basis for the sigmoidicity of the initial velocity versus GMP concentration plot. The LpcN-II tetramer showed differences in subunit organization upon activator binding that are absent in the activator-bound human cN-II structure. This is the first observation of a structural change induced by activator binding in cN-II that may be the molecular mechanism for enzyme activation. DatabaseThe coordinates and structure factors reported in this paper have been submitted to the Protein Data Bank under the accession numbers and . The accession number of GMP complexed LpcN-II is . Structured digital abstract andby() andby() Structured digital abstract was added on 5 March 2014 after original online publication]
Resumo:
Tobacco-specific nitrosamines (TSNA) have implications in the pathogenesis of various lung diseases and conditions are prevalent even in non-smokers. N-nitrosonornicotine (NNN) and 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are potent pulmonary carcinogens present in tobacco product and are mainly responsible for lung cancer. TSNA reacts with pulmonary surfactants, and alters the surfactant phospholipid. The present study was undertaken to investigate the in vitro exposure of rat lung tissue slices to NNK or NNN and to monitor the phospholipid alteration by P-32]orthophosphate labeling. Phospholipid content decreased significantly in the presence of either NNK or NNN with concentration and time dependent manner. Phosphatidylcholine (PC) is the main phospholipid of lung and significant reduction was observed in PC similar to 61%, followed by phosphatidylglycerol (PG) with 100 mu M of NNK, whereas NNN treated tissues showed a reduction in phosphatidylserine (PS) similar to 60% and PC at 250 mu M concentration. The phospholipase A(2) assays and expression studies reveal that both compounds enhanced phospholipid hydrolysis, thereby reducing the phospholipid content. Collectively, our data demonstrated that both NNK and NNN significantly influenced the surfactant phospholipid level by enhanced phospholipase A(2) activity. (C) 2014 Elsevier Ltd. All rights reserved.