897 resultados para spatio-temporal variation
Resumo:
Past global climate changes had strong regional expression. To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia. The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century. At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them. There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century. The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions. Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years.
Resumo:
We re-analyze the signal of non-planetary energetic neutral atoms (ENAs) in the 0.4-5.0 keV range measured with the Neutral Particle Detector (NPD) of the ASPERA-3 and ASPERA-4 experiments on board the Mars and Venus Express satellites. Due to improved knowledge of sensor characteristics and exclusion of data sets affected by instrument effects, the typical intensity of the ENA signal obtained by ASPERA-3 is an order of magnitude lower than in earlier reports. The ENA intensities measured with ASPERA-3 and ASPERA-4 now agree with each other. In the present analysis, we also correct the ENA signal for Compton-Getting and for ionization loss processes under the assumption of a heliospheric origin. We find spectral shapes and intensities consistent with those measured by the Interstellar Boundary Explorer (IBEX). The principal advantage of ASPERA with respect to the IBEX sensors is the two times better spectral resolution. In this study, we discuss the physical significance of the spectral shapes and their potential variation across the sky. At present, these observations are the only independent test of the heliospheric ENA signal measured with IBEX in this energy range. The ASPERA measurements also allow us to check for a temporal variation of the heliospheric signal as they were obtained between 2003 and 2007, whereas IBEX has been operational since the end of 2008.
Resumo:
Changes in EEG synchronization, i.e., spatio-temporal correlation, with amygdala-hippocampal stimulation were studied in patients with temporal lobe epilepsy. Synchronization was evaluated for high frequency, 130Hz, pseudo-monophasic or biphasic charge-balanced pulses. Desynchronization was most frequently induced by stimulation. There was no correlation between the changes in synchronization and the changes in interictal epileptiform discharge rates. Changes in synchronization do not appear yet to be a marker of stimulation efficiency in reducing seizures.
Resumo:
Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1-G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1-G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6-G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus.
Resumo:
Access to sufficient quantities of safe drinking water is a human right. Moreover, access to clean water is of public health relevance, particularly in semi-arid and Sahelian cities due to the risks of water contamination and transmission of water-borne diseases. We conducted a study in Nouakchott, the capital of Mauritania, to deepen the understanding of diarrhoeal incidence in space and time. We used an integrated geographical approach, combining socio-environmental, microbiological and epidemiological data from various sources, including spatially explicit surveys, laboratory analysis of water samples and reported diarrhoeal episodes. A geospatial technique was applied to determine the environmental and microbiological risk factors that govern diarrhoeal transmission. Statistical and cartographic analyses revealed concentration of unimproved sources of drinking water in the most densely populated areas of the city, coupled with a daily water allocation below the recommended standard of 20 l per person. Bacteriological analysis indicated that 93% of the non-piped water sources supplied at water points were contaminated with 10-80 coliform bacteria per 100 ml. Diarrhoea was the second most important disease reported at health centres, accounting for 12.8% of health care service consultations on average. Diarrhoeal episodes were concentrated in municipalities with the largest number of contaminated water sources. Environmental factors (e.g. lack of improved water sources) and bacteriological aspects (e.g. water contamination with coliform bacteria) are the main drivers explaining the spatio-temporal distribution of diarrhoea. We conclude that integrating environmental, microbiological and epidemiological variables with statistical regression models facilitates risk profiling of diarrhoeal diseases. Modes of water supply and water contamination were the main drivers of diarrhoea in this semi-arid urban context of Nouakchott, and hence require a strategy to improve water quality at the various levels of the supply chain.
Resumo:
Ecological networks are typically complex constructions of species and their interactions. During the last decade, the study of networks has moved from static to dynamic analyses, and has attained a deeper insight into their internal structure, heterogeneity, and temporal and spatial resolution. Here, we review, discuss and suggest research lines in the study of the spatio-temporal heterogeneity of networks and their hierarchical nature. We use case study data from two well-characterized model systems (the food web in Broadstone Stream in England and the pollination network at Zackenberg in Greenland), which are complemented with additional information from other studies. We focus upon eight topics: temporal dynamic space-for-time substitutions linkage constraints habitat borders network modularity individual-based networks invasions of networks and super networks that integrate different network types. Few studies have explicitly examined temporal change in networks, and we present examples that span from daily to decadal change: a common pattern that we see is a stable core surrounded by a group of dynamic, peripheral species, which, in pollinator networks enter the web via preferential linkage to the most generalist species. To some extent, temporal and spatial scales are interchangeable (i.e. networks exhibit ‘ergodicity’) and we explore how space-for-time substitutions can be used in the study of networks. Network structure is commonly constrained by phenological uncoupling (a temporal phenomenon), abundance, body size and population structure. Some potential links are never observed, that is they are ‘forbidden’ (fully constrained) or ‘missing’ (a sampling effect), and their absence can be just as ecologically significant as their presence. Spatial habitat borders can add heterogeneity to network structure, but their importance has rarely been studied: we explore how habitat generalization can be related to other resource dimensions. Many networks are hierarchically structured, with modules forming the basic building blocks, which can result in self-similarity. Scaling down from networks of species reveals another, finer-grained level of individual-based organization, the ecological consequences of which have yet to be fully explored. The few studies of individual-based ecological networks that are available suggest the potential for large intraspecific variance and, in the case of food webs, strong size-structuring. However, such data are still scarce and more studies are required to link individual-level and species-level networks. Invasions by alien species can be tracked by following the topological ‘career’ of the invader as it establishes itself within a network, with potentially important implications for conservation biology. Finally, by scaling up to a higher level of organization, it is possible to combine different network types (e.g. food webs and mutualistic networks) to form super networks, and this new approach has yet to be integrated into mainstream ecological research. We conclude by listing a set of research topics that we see as emerging candidates for ecological network studies in the near future.
Resumo:
Recently it has been proposed that the evaluation of effects of pollutants on aquatic organisms can provide an early warning system of potential environmental and human health risks (NRC 1991). Unfortunately there are few methods available to aquatic biologists to conduct assessments of the effects of pollutants on aquatic animal community health. The primary goal of this research was to develop and evaluate the feasibility of such a method. Specifically, the primary objective of this study was to develop a prototype rapid bioassessment technique similar to the Index of Biotic Integrity (IBI) for the upper Texas and Northwestern Gulf of Mexico coastal tributaries. The IBI consists of a series of "metrics" which describes specific attributes of the aquatic community. Each of these metrics are given a score which is then subtotaled to derive a total assessment of the "health" of the aquatic community. This IBI procedure may provide an additional assessment tool for professionals in water quality management.^ The experimental design consisted primarily of compiling previously collected data from monitoring conducted by the Texas Natural Resource Conservation Commission (TNRCC) at five bayous classified according to potential for anthropogenic impact and salinity regime. Standardized hydrological, chemical, and biological monitoring had been conducted in each of these watersheds. The identification and evaluation of candidate metrics for inclusion in the estuarine IBI was conducted through the use of correlation analysis, cluster analysis, stepwise and normal discriminant analysis, and evaluation of cumulative distribution frequencies. Scores of each included metric were determined based on exceedances of specific percentiles. Individual scores were summed and a total IBI score and rank for the community computed.^ Results of these analyses yielded the proposed metrics and rankings listed in this report. Based on the results of this study, incorporation of an estuarine IBI method as a water quality assessment tool is warranted. Adopted metrics were correlated to seasonal trends and less so to salinity gradients observed during the study (0-25 ppt). Further refinement of this method is needed using a larger more inclusive data set which includes additional habitat types, salinity ranges, and temporal variation. ^
Resumo:
We tested a set of surface common mid-point (CMP) ground penetrating radar (GPR) surveys combined with elevation rods ( to monitor surface deformation) and gas flux measurements to investigate in-situ biogenic gas dynamics and ebullition events in a northern peatland ( raised bog). The main findings are: ( 1) changes in the two-way travel time from the surface to prominent reflectors allow estimation of average gas contents and evolution of free-phase gas (FPG); ( 2) peat surface deformation and gas flux measurements are strongly consistent with GPR estimated changes in FPG content over time; ( 3) rapid decreases in atmospheric pressure are associated with increased gas flux; and ( 4) single ebullition events can induce releases of methane much larger ( up to 192 g/m(2)) than fluxes reported by others. These results indicate that GPR is a useful tool for assessing the spatial distribution, temporal variation, and volume of biogenic gas deposits in peatlands.
Resumo:
High-resolution chemical records from an 80.4 m ice core from the central Himalaya demonstrate climatic and environmental changes since 1844. The chronological net accumulation series shows a sharp decrease from the mid-1950s, which is coincident with the widely observed glacier retreat. A negative correlation is found between the ice-core delta(18)O record and the monsoon precipitation for Indian region 7. The temporal variation of the terrestrial ions (Ca2+ and Mg2+) is controlled by both the monsoon precipitation for Indian regions 3,7 and 8, located directly south and west of the Himalaya, and the dust-storm duration and frequency in the northern arid regions, such as the Taklimakan desert, China. The NH4+ profile is fairly flat until the 1940s, then substantially increases until the end of the 1980s, with a slight decrease during the 1990s which may reflect new agricultural practices. The SO42- and NO3- profiles show an apparent increasing trend, especially during the period 1940s-80s. Moreover, SO42- concentrations for the East Rongbuk Glacier core are roughly double that of the nearby Dasuopu core at Xixabangma, Himalaya, due to local human activity including that of climbing teams who use gasoline for cooking, energy and transport.
Resumo:
Six years of daily satellite data are used to quantify and map intraseasonal variability of chlorophyll and sea surface temperature (SST) in the California Current. We define intraseasonal variability as temporal variation remaining after removal of interannual variability and stationary seasonal cycles. Semivariograms are used to quantify the temporal structure of residual time series. Empirical orthogonal function (EOF) analyses of semivariograms calculated across the region isolate dominant scales and corresponding spatial patterns of intraseasonal variability. The mode 1 EOFs for both chlorophyll and SST semivariograms indicate a dominant timescale of similar to 60 days. Spatial amplitudes and patterns of intraseasonal variance derived from mode 1 suggest dominant forcing of intraseasonal variability through distortion of large scale chlorophyll and SST gradients by mesoscale circulation. Intraseasonal SST variance is greatest off southern Baja and along southern Oregon and northern California. Chlorophyll variance is greatest over the shelf and slope, with elevated values closely confined to the Baja shelf and extending farthest from shore off California and the Pacific Northwest. Intraseasonal contributions to total SST variability are strongest near upwelling centers off southern Oregon and northern California, where seasonal contributions are weak. Intraseasonal variability accounts for the majority of total chlorophyll variance in most inshore areas save for southern Baja, where seasonal cycles dominate. Contributions of higher EOF modes to semivariogram structure indicate the degree to which intraseasonal variability is shifted to shorter timescales in certain areas. Comparisons of satellite-derived SST semivariograms to those calculated from co-located and concurrent buoy SST time series show similar features.
Resumo:
The water budget approach is applied to an atmospheric box above Switzerland (hereafter referred to as the “Swiss box”) to quantify the atmospheric water vapour flux using ECMWF ERA-Interim reanalyses. The results confirm that the water vapour flux through the Swiss box is highly temporally variable, ranging from 1 to 5 · 107 kg/s during settled anticyclonic weather, but increasing in size by a factor of ten or more during high speed currents of water vapour. Overall, Switzerland and the Swiss box “import” more water vapour than it “exports”, but the amount gained remains only a small fraction (1% to 5%) of the total available water vapour passing by. High inward water vapour fluxes are not necessarily linked to high precipitation episodes. The water vapour flux during the August 2005 floods, which caused severe damage in central Switzerland, is examined and an assessment is made of the computed water vapour fluxes compared to high spatio-temporal rain gauge and radar observations. About 25% of the incoming water vapour flux was stored in Switzerland. The computed water vapour fluxes from ECMWF data compare well with the mean rain gauge observations and the combined rain-gauge radar precipitation products.
Resumo:
In a network of competing species, a competitive intransitivity occurs when the ranking of competitive abilities does not follow a linear hierarchy (A > B > C but C > A). A variety of mathematical models suggests that intransitive networks can prevent or slow down competitive exclusion and maintain biodiversity by enhancing species coexistence. However, it has been difficult to assess empirically the relative importance of intransitive competition because a large number of pairwise species competition experiments are needed to construct a competition matrix that is used to parameterize existing models. Here we introduce a statistical framework for evaluating the contribution of intransitivity to community structure using species abundance matrices that are commonly generated from replicated sampling of species assemblages. We provide metrics and analytical methods for using abundance matrices to estimate species competition and patch transition matrices by using reverse-engineering and a colonization-competition model. These matrices provide complementary metrics to estimate the degree of intransitivity in the competition network of the sampled communities. Benchmark tests reveal that the proposed methods could successfully detect intransitive competition networks, even in the absence of direct measures of pairwise competitive strength. To illustrate the approach, we analyzed patterns of abundance and biomass of five species of necrophagous Diptera and eight species of their hymenopteran parasitoids that co-occur in beech forests in Germany. We found evidence for a strong competitive hierarchy within communities of flies and parasitoids. However, for parasitoids, there was a tendency towards increasing intransitivity in higher weight classes, which represented larger resource patches. These tests provide novel methods for empirically estimating the degree of intransitivity in competitive networks from observational datasets. They can be applied to experimental measures of pairwise species interactions, as well as to spatio-temporal samples of assemblages in homogenous environments or environmental gradients.
Resumo:
Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.
Resumo:
We propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As our input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We include a novel approach to resample the input into regularly sampled 3D light fields by aligning them in the spatio-temporal domain, and a technique for high-quality disparity estimation from light fields. We show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.
Resumo:
Bees are a key component of biodiversity as they ensure a crucial ecosystem service: pollination. This ecosystem service is nowadays threatened, because bees suffer from agricultural intensification. Yet, bees rarely benefit from the measures established to promote biodiversity in farmland, such as agri-environment schemes (AES). We experimentally tested if the spatio-temporal modification of mowing regimes within extensively managed hay meadows, a widespread AES, can promote bees. We applied a randomized block design, replicated 12 times across the Swiss lowlands, that consisted of three different mowing treatments: 1) first cut not before 15 June (conventional regime for meadows within Swiss AES); 2) first cut not before 15 June, as treatment 1 but with 15% of area left uncut serving as a refuge; 3) first cut not before 15 July. Bees were collected with pan traps, twice during the vegetation season (before and after mowing). Wild bee abundance and species richness significantly increased in meadows where uncut refuges were left, in comparison to meadows without refuges: there was both an immediate (within year) and cumulative (from one year to the following) positive effect of the uncut refuge treatment. An immediate positive effect of delayed mowing was also evidenced in both wild bees and honey bees. Conventional AES could easily accommodate such a simple management prescription that promotes farmland biodiversity and is likely to enhance pollination services.