860 resultados para spatio-temporal reasoning
Resumo:
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south-eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O-N ha−1 over the 2-year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2-year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4-C ha−1 day−1 during extended dry periods to less than 2–5 g CH4-C ha−1 day−1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4-C ha−1 yr−1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one-third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability
Resumo:
Objective To identify the spatial and temporal clusters of Barmah Forest virus (BFV) disease in Queensland in Australia, using geographical information systems (GIS) and spatial scan statistic (SaTScan). Methods We obtained BFV disease cases, population and statistical local areas boundary data from Queensland Health and Australian Bureau of Statistics respectively during 1992-2008 for Queensland. A retrospective Poisson-based analysis using SaTScan software and method was conducted in order to identify both purely spatial and space-time BFV disease high-rate clusters. A spatial cluster size of a proportion of the population and a 200km circle radius and varying time windows from 1 month to 12 months were chosen (for the space-time analysis). Results The spatial scan statistic detected a most likely significant purely spatial cluster (including 23 SLAs) and a most likely significant space-time cluster (including 24 SLAs) in approximately the same location. Significant secondary clusters were also identified from both the analyses in several locations. Conclusions This study provides evidence of the existence of statistically significant BFV disease clusters in Queensland, Australia. The study also demonstrated the relevance and applicability of SaTScan in analysing on-going surveillance data to identify clusters to facilitate the development of effective BFV disease prevention and control strategies in Queensland, Australia.