866 resultados para spatial variations in sulfie generation
Resumo:
Many of the reactive trace gases detected in the atmosphere are both emitted from and deposited to the global oceans via exchange across the air–sea interface. The resistance to transfer through both air and water phases is highly sensitive to physical drivers (waves, bubbles, films, etc.), which can either enhance or suppress the rate of diffusion. In addition to outlining the fundamental processes controlling the air–sea gas exchange, the authors discuss these drivers, describe the existing parameterizations used to predict transfer velocities, and summarize the novel techniques for measuring in situ exchange rates. They review trace gases that influence climate via radiative forcing (greenhouse gases), those that can alter the oxidative capacity of the atmosphere (nitrogen- and sulfur-containing gases), and those that impact ozone levels (organohalogens), both in the troposphere and stratosphere. They review the known biological and chemical routes of production and destruction within the water column for these gases, whether the ocean acts as a source or sink, and whether temporal and spatial variations in saturation anomalies are observed. A current estimate of the marine contribution to the total atmospheric flux of these gases, which often highlights the significance of the oceans in biogeochemical cycling of trace gases, is provided, and how air–sea gas fluxes may change in the future is briefly assessed.
Resumo:
As part of a programme to investigate spatial variations in the Galactic chemical composition, we have been searching for normal B-type stars and A-type supergiants near the Galactic center. During this search we have found eleven peculiar stars, and in some cases performed detailed abundance analyses of them which suggest that they may be at a post-AGB evolutionary stage.
Resumo:
We present here a simple methodology for calculating species inventories for allergenic pollen that can be used by atmospheric transport models. Ragweed (Ambrosia) species distribution or infection level on the Pannonian Plain has been used as an example of how the methodology can be used. The Pannonian Plain is one of the three main regions in Europe recognized as being polluted by Ambrosia. The methodology relies on spatial variations in annual Ambrosia pollen counts, knowledge on ragweed ecology and detailed land cover information. The results of this analysis showed that some of the highest mean annual ragweed pollen concentrations were witnessed around Kecskemét in central Hungary and Novi Sad in northern Serbia. These areas are also the areas with the highest density of Ambrosia habitats. The resulting inventory can be entered into atmospheric transport models in combination with other components such as a phenological model and a model for daily pollen release, in order to simulate the movement of ragweed pollen from the Pannonian Plain. The methodology is likely to be generally applicable for creating inventories of species distribution of allergenic plants. The main requirement is availability of: detailed land cover information; pollen indexes; a list of the most important habitats; and a region of interest that is mainly influenced by local sources.
Resumo:
The marine atmospheric boundary layer (MABL) plays a vital role in the transport of momentum and heat from the surface of the ocean into the atmosphere. A detailed study on the MABL characteristics was carried out using high-resolution surface-wind data as measured by the QuikSCAT (Quick scatterometer) satellite. Spatial variations in the surface wind, frictional velocity, roughness parameter and drag coe±cient for the di®erent seasons were studied. The surface wind was strong during the southwest monsoon season due to the modulation induced by the Low Level Jetstream. The drag coe±cient was larger during this season, due to the strong winds and was lower during the winter months. The spatial variations in the frictional velocity over the seas was small during the post-monsoon season (»0.2 m s¡1). The maximum spatial variation in the frictional velocity was found over the south Arabian Sea (0.3 to 0.5 m s¡1) during the southwest monsoon period, followed by the pre-monsoon over the Bay of Bengal (0.1 to 0.25 m s¡1). The mean wind-stress curl during the winter was positive over the equatorial region, with a maximum value of 1.5£10¡7 N m¡3, but on either side of the equatorial belt, a negative wind-stress curl dominated. The area average of the frictional velocity and drag coe±cient over the Arabian Sea and Bay of Bengal were also studied. The values of frictional velocity shows a variability that is similar to the intraseasonal oscillation (ISO) and this was con¯rmed via wavelet analysis. In the case of the drag coe±cient, the prominent oscillations were ISO and quasi-biweekly mode (QBM). The interrelationship between the drag coe±cient and the frictional velocity with wind speed in both the Arabian Sea and the Bay of Bengal was also studied.
Resumo:
We report evidence for a major ice stream that operated over the northwestern Canadian Shield in the Keewatin Sector of the Laurentide Ice Sheet during the last deglaciation 9000-8200 (uncalibrated) yr BP. It is reconstructed at 450 km in length, 140 km in width, and had an estimated catchment area of 190000 km. Mapping from satellite imagery reveals a suite of bedforms ('flow-set') characterized by a highly convergent onset zone, abrupt lateral margins, and where flow was presumed to have been fastest, a remarkably coherent pattern of mega-scale glacial lineations with lengths approaching 13 km and elongation ratios in excess of 40:1. Spatial variations in bedform elongation within the flow-set match the expected velocity field of a terrestrial ice stream. The flow pattern does not appear to be steered by topography and its location on the hard bedrock of the Canadian Shield is surprising. A soft sedimentary basin may have influenced ice-stream activity by lubricating the bed over the downstream crystalline bedrock, but it is unlikely that it operated over a pervasively deforming till layer. The location of the ice stream challenges the view that they only arise in deep bedrock troughs or over thick deposits of 'soft' fine-grained sediments. We speculate that fast ice flow may have been triggered when a steep ice sheet surface gradient with high driving stresses contacted a proglacial lake. An increase in velocity through calving could have propagated fast ice flow upstream (in the vicinity of the Keewatin Ice Divide) through a series of thermomechanical feedback mechanisms. It exerted a considerable impact on the Laurentide Ice Sheet, forcing the demise of one of the last major ice centres.
Resumo:
This paper presents a first attempt to estimate mixing parameters from sea level observations using a particle method based on importance sampling. The method is applied to an ensemble of 128 members of model simulations with a global ocean general circulation model of high complexity. Idealized twin experiments demonstrate that the method is able to accurately reconstruct mixing parameters from an observed mean sea level field when mixing is assumed to be spatially homogeneous. An experiment with inhomogeneous eddy coefficients fails because of the limited ensemble size. This is overcome by the introduction of local weighting, which is able to capture spatial variations in mixing qualitatively. As the sensitivity of sea level for variations in mixing is higher for low values of mixing coefficients, the method works relatively well in regions of low eddy activity.
Resumo:
In the United Kingdom, as in other regions of Europe and North America, recent decreases in surface water sulphate concentrations, due to reduced sulphur emissions, have coincided with marked increases in dissolved organic carbon (DOC) concentrations. Since many of the compounds comprising DOC are acidic, the resulting increases in organic acidity may have the potential to offset the benefits of a decrease in mineral (sulphate) acidity. To test this, we used a triprotic model of organic acid dissociation to estimate the proportional organic acid buffering of reduced mineral acidity as measured in the 22 lakes and streams monitored by the UK Acid Waters Monitoring Network. For an average non-marine sulphate decrease of 30 μeq l− 1 over 15 years from 1988–2003, we estimate that around 28% was counterbalanced by rising strong organic acids, 20% by rising alkalinity (partly attributable to an increase in weak organic acids), 11% by falling inorganic aluminium and 41% by falling non-marine base cations. The situation is complicated by a concurrent decrease in marine ion concentrations, and the impact this may have had on both DOC and acidity, but results clearly demonstrate that organic acid increases have substantially limited the amount of recovery from acidification (in terms of rising alkalinity and falling aluminium) that have resulted from reducing sulphur emissions. The consistency and magnitude of sulphate and organic acid changes are consistent with a causal link between the two, possibly due to the effects of changing acidity, ionic strength and aluminium concentrations on organic matter solubility. If this is the case, then organic acids can be considered effective but partial buffers to acidity change in organic soils, and this mechanism needs to be considered in assessing and modelling recovery from acidification, and in defining realistic reference conditions. However, large spatial variations in the relative magnitude of organic acid and sulphate changes, notably for low-deposition sites in northwestern areas where organic acid increases apparently exceed non-marine sulphate decreases, suggest that additional factors, such as changes in sea-salt deposition and climatic factors, may be required to explain the full magnitude of DOC increases in UK surface waters.
Resumo:
Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.
Resumo:
This study sprang from the hypothesis that spatial variations in the morbidity rate for dengue fever within the municipality of Natal are related to intra-city socioeconomic and environmental variations. The objective of the project was to classify the different suburbs of Natal according to their living conditions and establish if there was any correlation between this classification and the incidence rate for dengue fever, with the aim of enabling public health planners to better control this disease. Data on population density, access to safe drinking water, rubbish collection, sewage disposal facilities, income level, education and the incidence of dengue fever during the years 2001 and 2003 was drawn from the Brazilian Demographic Census 2000 and from the Reportable Disease Notification System -SINAN. The study is presented here in the form of two papers, corresponding to the types of analysis performed: a classification of the urban districts into quartiles according to the living conditions which exist there, in the first article; and the incidence of dengue fever in each of these quartiles, in the second. By applying factorial analysis to the chosen socioeconomic and environmental indicators for the year 2000, a compound index of living condition (ICV) was obtained. On the basis of this index, it was possible to classify the urban districts into quartiles. On undertaking this grouping (paper 1), a heterogeneous distribution of living conditions was found across the city. As to the incidence rate for dengue fever (paper 2), it was discovered that the quartile identified as having the best living conditions presented incidence rates of 15.62 and 15.24 per 1000 inhabitants respectively in the years 2001 and 2003; whereas the quartile representing worst living conditions showed incidence rates of 25.10 and 10.32 for the comparable periods. The results suggest that dengue fever occurs in all social classes, and that its incidence is not related in any evident way to the chosen formula for living conditions
Resumo:
O estudo de comunidades de peixes estuarinos tem recebido a atenção de pesquisadores, pelo fato destes ecossistemas apresentarem uma grande variedade e abundância de peixes. Muitas destas espécies possuem interesse comercial, constituido-se numa ferramenta fundamental para a avaliação dos estoques pesqueiros, contribuindo também para a conservação dos ambientes estuarinos e costeiros. O estuário do rio Curuçá localiza-se na costa norte, região do salgado paraense, apesar da pesca ser a principal atividade econômica das cidades da região, existem poucos estudos a respeito da ictiofauna local. O objetivo principal deste trabalho foi de caracterizar a ictiofauna demersal dos canais principais do estuário do rio Curuçá, identificando as variações anuais e espaciais na composição, densidade e biomassa, bem como os fatores abióticos que influenciam nestas variações. Para isto, foram realizadas coletas bimestrais, utilizando uma rede de arrasto de fundo, nos dois canais principais do estuário. Ao final do estudo foram capturados 18.989 indivíduos, pertecentes a 73 espécies, destas Ophichthus cylindroideus, Hippocampus reidi, Sygnathus pelagicus e Butis koilomatodon ainda não haviam sido registradas para a costa norte. As famílias Sciaenidae, Engraulidae e Ariidae, foram as mais representativas em número de espécies, densidade e biomassa, dominando as capturas. As 20 espécies classificadas como estuarinas foram a maioria, e apresentaram as maiores densidades e biomassa em todos os meses e estações de coleta. A densidade média (0,12 ind/m²) foi significativamente maior na estação chuvosa, já para a biomassa (1,11 g/m²) não houve diferenças significativas entre os meses de coleta. Entre os perfis, Curuçá apresentou uma maior riqueza de espécies, densidade e biomassa. Esta diferença está relacionada principalmente a uma maior heterogenidade de substratos deste perfil, fazendo com que este possua uma maior disponibilidade de microhabitat. Os parâmetros físicos-químicos da água se apresentaram homogêneos ao longo dos pontos de coletas tendo pouca influência sobre a distribuição espacial da ictiofauna. O fato de encontrarmos novos registros de espécies para a região, reforça a importância de novos estudos para uma maior compreensão da ictiofauna local, que é um importante recurso econômico para as populações locais.
Resumo:
The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 +/- 5.7 dB km(-1)) is somewhat lower than the value derived from radar profiles (25.3 +/- 1.1 dB km(-1)). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 +/- 2.2 dB km(-1). This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet.