861 resultados para soybean transformation
Resumo:
The sesquiterpenes cadina-4,10(15)-dien-3-one (1) and aromadendr-1(10)-en-9-one (squamulosone) (14) along with the triterpenoid methyl ursolate (21) were incubated with the fungus Mucor plumbeus ATCC 4740. Substrates 1, 14 and ursolic acid (20) were isolated from the plant Hyptis verticillata in large quantities. M. plumbeus hydroxylated 1 at C-12 and C-14. When the iron content of the medium was reduced, however, hydroxylation at these positions was also accompanied by epoxidation of the exocyclic double bond. In total nine new oxygenated cadinanes have been obtained. Sesquiterpene 14 was converted to the novel 2α,13-dihydroxy derivative along with four other metabolites. Methyl ursolate (21) was transformed to a new compound, methyl 3β,7β,21β-trihydroxyursa-9(11),12-dien-28-oate (22). Two other triterpenoids, 3β,28-dihydroxyurs-12-ene (uvaol) (23) and 3β,28-bis(dimethylcarbamoxy)urs-12-ene (24) were not transformed by the micro-organism, however. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Rhizoctonia solani causes pre- and post-emergence damping-off, root and hypocotyl rot and foliar blight in soybean. Foliar blight has resulted in yield losses of 31-60% in north and northeast Brazil. The aim of this study was to characterize isolates of R. solani associated with soybean in Brazil. Among 73 Rhizoctonia isolates examined, six were binucleate and 67 were multinucleate. The multinucleate isolates were characterized according to hyphal anastomosis reaction, mycelial growth rate, thiamine requirement, sclerotia production, and RAPD molecular markers. Four isolates that caused hypocotyl rot belonged to AG-4 and using RAPD analysis they grouped together with the HGI subgroup. Another isolate that caused root and hypocotyl rots was thiamine auxotrophic, grew at 35 °C, and belonged to AG-2-2 IIIB. All 62 isolates that caused foliar blight belonged to AG-1 IA. RAPD analysis of R. solani AG-1 IA soybean isolates showed high genetic similarity to a tester strain of AG-1 IA, confirming their classification. The teleomorph of R. solani, Thanatephorus cucumeris was produced in vitro by one AG-1 IA isolate from soybean. The AG-4 and AG-2-2 IIIB isolates caused damping-off and root and hypocotyl rots of soybean seedlings cv. 'FT-Cristalina', under greenhouse conditions. The AG-2-2 IIIB isolate caused large lesions on the cortex tissue, that was distinct from the symptoms caused by AG-4 isolates. The AG-1 IA isolates caused foliar blight in adult soybean plants cv. 'Xingu' under the greenhouse and also in a detached-leaf assay.
Resumo:
We report a case of a pleomorphic xantoastrocytoma which manifested itself as a cystic isodense lesion in the right fronto-temporal lobe in a 26 year-old woman. It appeared as a soft yellow tumor with cystic cavities on surgery. Five months after this surgery, the patient was submitted to a new operation, which revealed a friable tumor, easily differentiated from the normal parenchyma, with cystic components. The histopathological examination demonstrated pleomorphic xanthoastrocytoma with malignant transformation. Histologically, the tumor at first procedure was composed of pleomorphic astrocytes with multinucleated and foamy cells. A rare case of malignant transformation in pleomorphic xanthoastrocytoma is presented, discussed and illustrated in this paper.
Resumo:
For a typical non-symmetrical system with two parallel three phase transmission lines, modal transformation is applied using some examples of single real transformation matrices. These examples are applied searching an adequate single real transformation matrix to two parallel three phase transmission line systems. The analyses are started with the eigenvector and eigenvalue studies, using Clarke's transformation or linear combinations of Clarke's elements. The Z C and parameters are analyzed for the case that presents the smallest errors between the exact eigenvalues and the single real transformation matrix application results. The single real transformation determined for this case is based on Clarke's matrix and its main characteristic is the use of a unique homopolar reference. So, the homopolar mode becomes a connector mode between the two three-phase circuits of the analyzed system. ©2005 IEEE.
Resumo:
In transmission line transient analyses, a single real transformation matrix can obtain exact modes when the analyzed line is transposed. For non-transposed lines, the results are not exact. In this paper, non-symmetrical and non transposed three-phase line samples are analyzed with a single real transformation matrix application (Clarke's matrix). Some interesting characteristics of this matrix application are: single, real, frequency independent, line parameter independent, identical for voltage and current determination. With Clarke's matrix use, mathematical simplifications are obtained and the developed model can be applied directly in programs based on time domain. This model works without convolution procedures to deal with phase-mode transformation. In EMTP programs, Clarke's matrix can be represented by ideal transformers and the frequency dependent line parameters can be represented by modified-circuits. With these representations, the electrical values at any line point can be accessed for phase domain or mode domain using the Clarke matrix or its inverse matrix. For symmetrical and non-transposed lines, the model originates quite small errors. In addition, the application of the proposed model to the non-symmetrical and non-transposed three phase transmission lines is investigated. ©2005 IEEE.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. ©2006 IEEE.