939 resultados para soil resistance to penetration
Resumo:
Cancer and cardio-vascular diseases are the leading causes of death world-wide. Caused by systemic genetic and molecular disruptions in cells, these disorders are the manifestation of profound disturbance of normal cellular homeostasis. People suffering or at high risk for these disorders need early diagnosis and personalized therapeutic intervention. Successful implementation of such clinical measures can significantly improve global health. However, development of effective therapies is hindered by the challenges in identifying genetic and molecular determinants of the onset of diseases; and in cases where therapies already exist, the main challenge is to identify molecular determinants that drive resistance to the therapies. Due to the progress in sequencing technologies, the access to a large genome-wide biological data is now extended far beyond few experimental labs to the global research community. The unprecedented availability of the data has revolutionized the capabilities of computational researchers, enabling them to collaboratively address the long standing problems from many different perspectives. Likewise, this thesis tackles the two main public health related challenges using data driven approaches. Numerous association studies have been proposed to identify genomic variants that determine disease. However, their clinical utility remains limited due to their inability to distinguish causal variants from associated variants. In the presented thesis, we first propose a simple scheme that improves association studies in supervised fashion and has shown its applicability in identifying genomic regulatory variants associated with hypertension. Next, we propose a coupled Bayesian regression approach -- eQTeL, which leverages epigenetic data to estimate regulatory and gene interaction potential, and identifies combinations of regulatory genomic variants that explain the gene expression variance. On human heart data, eQTeL not only explains a significantly greater proportion of expression variance in samples, but also predicts gene expression more accurately than other methods. We demonstrate that eQTeL accurately detects causal regulatory SNPs by simulation, particularly those with small effect sizes. Using various functional data, we show that SNPs detected by eQTeL are enriched for allele-specific protein binding and histone modifications, which potentially disrupt binding of core cardiac transcription factors and are spatially proximal to their target. eQTeL SNPs capture a substantial proportion of genetic determinants of expression variance and we estimate that 58% of these SNPs are putatively causal. The challenge of identifying molecular determinants of cancer resistance so far could only be dealt with labor intensive and costly experimental studies, and in case of experimental drugs such studies are infeasible. Here we take a fundamentally different data driven approach to understand the evolving landscape of emerging resistance. We introduce a novel class of genetic interactions termed synthetic rescues (SR) in cancer, which denotes a functional interaction between two genes where a change in the activity of one vulnerable gene (which may be a target of a cancer drug) is lethal, but subsequently altered activity of its partner rescuer gene restores cell viability. Next we describe a comprehensive computational framework --termed INCISOR-- for identifying SR underlying cancer resistance. Applying INCISOR to mine The Cancer Genome Atlas (TCGA), a large collection of cancer patient data, we identified the first pan-cancer SR networks, composed of interactions common to many cancer types. We experimentally test and validate a subset of these interactions involving the master regulator gene mTOR. We find that rescuer genes become increasingly activated as breast cancer progresses, testifying to pervasive ongoing rescue processes. We show that SRs can be utilized to successfully predict patients' survival and response to the majority of current cancer drugs, and importantly, for predicting the emergence of drug resistance from the initial tumor biopsy. Our analysis suggests a potential new strategy for enhancing the effectiveness of existing cancer therapies by targeting their rescuer genes to counteract resistance. The thesis provides statistical frameworks that can harness ever increasing high throughput genomic data to address challenges in determining the molecular underpinnings of hypertension, cardiovascular disease and cancer resistance. We discover novel molecular mechanistic insights that will advance the progress in early disease prevention and personalized therapeutics. Our analyses sheds light on the fundamental biological understanding of gene regulation and interaction, and opens up exciting avenues of translational applications in risk prediction and therapeutics.
Resumo:
International audience
Resumo:
International audience
Resumo:
Microorganisms in the plant rhizosphere, the zone under the influence of roots, and phyllosphere, the aboveground plant habitat, exert a strong influence on plant growth, health, and protection. Tomatoes and cucumbers are important players in produce safety, and the microbial life on their surfaces may contribute to their fitness as hosts for foodborne pathogens such as Salmonella enterica and Listeria monocytogenes. External factors such as agricultural inputs and environmental conditions likely also play a major role. However, the relative contributions of the various factors at play concerning the plant surface microbiome remain obscure, although this knowledge could be applied to crop protection from plant and human pathogens. Recent advances in genomic technology have made investigations into the diversity and structure of microbial communities possible in many systems and at multiple scales. Using Illumina sequencing to profile particular regions of the 16S rRNA gene, this study investigates the influences of climate and crop management practices on the field-grown tomato and cucumber microbiome. The first research chapter (Chapter 3) involved application of 4 different soil amendments to a tomato field and profiling of harvest-time phyllosphere and rhizosphere microbial communities. Factors such as water activity, soil texture, and field location influenced microbial community structure more than soil amendment use, indicating that field conditions may exert more influence on the tomato microbiome than certain agricultural inputs. In Chapter 4, the impact of rain on tomato and cucumber-associated microbial community structures was evaluated. Shifts in bacterial community composition and structure were recorded immediately following rain events, an effect which was partially reversed after 4 days and was strongest on cucumber fruit surfaces. Chapter 5 focused on the contribution of insect visitors to the tomato microbiota, finding that insects introduced diverse bacterial taxa to the blossom and green tomato fruit microbiome. This study advances our understanding of the factors that influence the microbiomes of tomato and cucumber. Farms are complex environments, and untangling the interactions between farming practices, the environment, and microbial diversity will help us develop a comprehensive understanding of how microbial life, including foodborne pathogens, may be influenced by agricultural conditions.
Resumo:
The aim of this study was to evaluate the performance of progenies from Citrullus lanatus var. lanatus (cultivated watermelons) when crossed with progenies from C. lanatus var. citroides (fodder watermelon with a historic of resistance to the nematode Meloidogyne enterolobii). The parents and their F1s were evaluated for resistance to this nematode. In the initial stages of eleven treatments, watermelon seedlings plantlets were transplanted to plastic bags of six kilograms once the first leaves developed. Ten inoculated plants with 5,200 eggs in the soil near the stem of the plant and four non-inoculated ones were used in each treatment, in a complete block design. Sixty-two days after sowing, the following characteristics were evaluated: the length of the aerial part of the plant (LAP, in m), fresh mass of the aerial part (FMAP, in g), root fresh mass (RFM, in g), egg number (EN) and reproduction factor (RF). A comparison between the averages of inoculated and non-inoculated plants was performed using Scott-Knott test at 5% and the diallelic analysis was performed using the GENES program. The morphological characteristics did not allow for the identification of the parent plants or the F1s with respect to nematode resistance, but the variables EN and RF were useful for such identification. The analyses of the general and specific combining abilities indicate highly significant effects with respect to this resistance, showing additive gene effects as well as dominance and epistatic gene effects, allowing for identification of parents and F1s that can be used in watermelon breeding programs to improve resistance to the M. enterolobii.
Resumo:
Several diseases challenge bread and durum wheat productions worldwide. The importance of these cereals requires adequate protection to pathogens that can cause strong yield and grain quality losses. The main work of this thesis was related to phenotype GDP (Global Durum Panel) in the Mediterranean region (Italy, Egypt, Lebanon, Morocco and Turkey) and Argentina across three years (2019-2021) for yellow rust resistance (infection type and severity). GWAS shows in particular, loci in chromosome 1B, 2B, 4B, 5A, 6A, 7B showed high significance across nurseries/years, with various patterns of GxE. The second chapter is about Zymoseptoria tritici, agent of STB (Septoria Tritici Blotch), a foliar pathogen that yearly causes high damages if not controlled. In recent years research in durum wheat breeding is focused on the identification of novel, underexploited resistance genes to be subsequently and conveniently moved into the pre-breeding and breeding stream. The plants were phenotyped for disease height characters, infection type at the flag leaf and infection type at the level of the canopy below the flag leaf. This experiment opens up a rich scenario of analysis and opportunities to investigate and discover new loci of resistance to STB. Third chapter is about Fusarium head blight (FHB) is a fungal disease caused by pathogens belonging to the genus Fusarium. In particular, Fusarium culmorum and Fusarium graminearum species cause severe grain yield losses and accumulation of mycotoxins in wheat that compromise food safety. Over 250 QTL/genes for FHB resistance have been identified in bread wheat, such as Fhb 1 and Fhb 5 but only a small number of FHB resistance loci have been mapped in durum wheat. The aim of this work is to find loci of partial resistance to FHB already present in durum and bread wheat germplasm and therefore easily cumulative.
Resumo:
The PhD thesis was developed in the framework of Innovar H2020 project. This project aimed at using genomics, transcriptomics and phenotyping techniques to update varietal registration procedure used in Europe for Value of Cultivation and Use (VCU) and Distinctiness Uniformity and Stability (DUS) protocols. The phenotypic and genotypic diversity of a durum wheat panel were assessed for different agronomic traits, connected with wheat development, disease resistance and spike fertility. A panel of 253 durum wheat varieties was characterized for VCU and DUS traits and genotyped with Illumina 90K SNP Chip array (Wang et al., 2014). GWAS analysis was performed, detecting strong QTLs confirmed also by literature review. Candidate genes were identified for each trait and molecular markers will be developed to be used for marker assisted selection in breeding programs. As for disease resistance, the panel was evaluated for resistance to Soil-Borne-Cereal-Mosaic-Virus (SBCMV). A major QTL, sbm2, was detected on chromosome 2B responsible for durum wheat resistance (Maccaferri et al., 2011). The sbm2 interval was explored by fine mapping on segregant population using KASP markers and by RNASeq analysis, detecting candidate genes involved in plant-pathogen reaction. As regards yield related traits, detailed analysis was performed on the GNI-2A QTL (Milner et al., 2016), responsible for increased number spike fertility. Fine mapping analysis was performed on durum panel identifying hox2 a strong candidate gene, codifying for transcription factor protein. The gene is paralogue of GNI-1 (Sakuma et al., 2019), and it has a 4 kbp deletion responsible for increased number of florets per spikelet. To conclude, the herein reported thesis shows a complete characterization of agronomic and disease resistance traits in modern durum wheat varieties. The results obtained will augment available information for each variety, identifying informative molecular markers for breeding purposes and QTLs/candidate genes responsible for different agronomic traits.
Resumo:
This thesis deals with the criticism of Macedonian kingship in the ancient Iranian world. The question of indigenous opposition and resistance to the Greeks and Macedonians has been little addressed by ancient historians. The study therefore adopts a different, interdisciplinary perspective and seeks to understand where the utterly negative portrayal of Alexander and the Macedonians found in most Iranian sources stems from. The first part deals with the subject by first examining the acts of violence committed by Alexander and his men against the Iranians during the expedition to Asia that might have led to such a portrayal in the Iranian sources. I have focused on looting, massacres and insults to deities, such as the looting of temples or the destruction of many settlements in ancient Iran handed down in classical sources. To this end, an important part was devoted to the analysis of archaeological sources, especially the signs of destruction in areas such as Persia and Sogdiana. In the second part, the image of Alexander and his successors, although mentioned much less frequently, as it appears in pre-Islamic Iranian literature, is analysed in detail, focusing on the faults and cruelties attributed to them against the Iranians, but especially against their religion. These are mostly Zoroastrian religious sources, whose clergy preserved a demonic image of the Macedonian kings. In the third and final part, further examples of offences committed by the Diadochi and Seleucids against the Iranians in the classical tradition are collected. At the same time, it is examined how the Hellenistic rulers of Iranian origin, e.g. the Arsacids and the Orontids, opposed not only militarily but also ideologically the Macedonian tradition represented by the kingdoms of Macedonian descent and chose a pro-Iranian tradition that was clearly different from the Greco-Roman one.
Resumo:
Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.
Resumo:
To report on the use of chronic myeloid leukemia as a theme of basic clinical integration for first year medical students to motivate and enable in-depth understanding of the basic sciences of the future physician. During the past thirteen years we have reviewed and updated the curriculum of the medical school of the Universidade Estadual de Campinas. The main objective of the new curriculum is to teach the students how to learn to learn. Since then, a case of chronic myeloid leukemia has been introduced to first year medical students and discussed in horizontal integration with all themes taught during a molecular and cell biology course. Cell structure and components, protein, chromosomes, gene organization, proliferation, cell cycle, apoptosis, signaling and so on are all themes approached during this course. At the end of every topic approached, the students prepare in advance the corresponding topic of clinical cases chosen randomly during the class, which are then presented by them. During the final class, a paper regarding mutations in the abl gene that cause resistance to tyrosine kinase inhibitors is discussed. After each class, three tests are solved in an interactive evaluation. The course has been successful since its beginning, 13 years ago. Great motivation of those who participated in the course was observed. There were less than 20% absences in the classes. At least three (and as many as nine) students every year were interested in starting research training in the field of hematology. At the end of each class, an interactive evaluation was performed and more than 70% of the answers were correct in each evaluation. Moreover, for the final evaluation, the students summarized, in a written report, the molecular and therapeutic basis of chronic myeloid leukemia, with scores ranging from 0 to 10. Considering all 13 years, a median of 78% of the class scored above 5 (min 74%-max 85%), and a median of 67% scored above 7. Chronic myeloid leukemia is an excellent example of a disease that can be used for clinical basic integration as this disorder involves well known protein, cytogenetic and cell function abnormalities, has well-defined diagnostic strategies and a target oriented therapy.
Resumo:
The aim of this research was to study the effect of chemical additives (lime and Portland cement) associated with sodium silicate on soil in order to obtain compressed soil bricks. Mini panels were constructed with such bricks being their physical and mechanical characteristics determined in laboratory conditions and their behavior evaluated through the association of destructive and non-destructive methods. For this purpose a sandy soil and a finely divided one were added to Portland cement and lime in the dosage of 6% and 10% taken in dry weight basis in relation to the dry soil. The sodium silicate dosage of 4% was also taken in dry weight basis in relation to the dry soil-cement or to the dry soil-lime. The compressed soil bricks were cured in a humidity chamber for 7; 28; 56 and 91 days. The bricks were laid on the fourteenth day to form prismatic mini panels each one with four layers of bricks. After 28; 56 and 91 days the mini panels were submitted to both; ultrasonic and compressive tests to determine its elastic properties (dynamic modulus) and the compressive resistance. The best results in terms of compressive strength, water absorption capacity or dynamic elastic modulus, were reached by the sandy soil added to 10% of Portland cement or lime associated with sodium silicate.
Resumo:
This paper presents the behavior of three bored piles conducted in diabasic soil submitted to uplift forces. The piles were built at the site for Experimental Studies in Soil Mechanics and Foundations of UNICAMP, located in the city of Campinas, Brazil. Field tests have already been conducted at the site (SPT, CPT, DMT and PMT), as well as laboratory tests by using sample soils taken from a well up to 17 m deep. The water table is not checked until a depth of 17 m. In order to check the behavior of the piles when submitted to uplift forces, slow static load tests were carried out as the recommendations of NBR 12131. The carrying capacity of these piles was also provided by means of theoretical methods, appropriate for uplift forces, and through semi-empirical methods appropriate for compression forces, considering only the portion of lateral resistance. The values estimated by using the considered methods were compared to those obtained by means of load tests. One of the tested piles was extracted from the soil to be the subject of a study on its geometry.
Resumo:
The objective of this study was to quantify the effect of plonk on compressive behavior and mechanical attributes such as consistency, optimum moisture for compaction and maximum density of a Red-Yellow Latosol (Oxisol) to evaluate the effect of plonk and compaction state in splashed particles, from Lavras (MG) region. The plonk was obtained from an artisanal sugarcane brandy alembic. Undisturbed and disturbed soil samples were collected at 0 to 3 cm and 60 to 63 cm depths. Disturbed soil samples were used for soil characterization, determination of consistence limits and Normal Proctor essay after material incubation with plonk. Undisturbed soil samples were saturated with plonk or distilled water (control) during 48 hours for testing the compressibility and resistance to splash by using simulated rainfall. The plonk altered the consistence limits of studied layers. For the 0-3 cm layer, the plonk reduced the friable range, and for the 60-63 cm layer the effect was in the opposite direction. For both layers, the plonk increased Dmax and decreased Uoptimum. Regardless of the plonk treatment, both layers presented the same load support capacity. The compaction degree of samples influenced the splash erosion. The increase of the applied pressure over the samples resulted in increase of splash material quantity. At the 60-63 cm layer, the plonk treatment reduced the splash material quantity by increasing the applied pressure, mainly when the samples were at field capacity.
Resumo:
The purpose of this study was to evaluate the impact and fracture resistance of acrylic resins: a heat-polymerized resin, a high-impact resin and an experimental polymethyl methacrylate with elastomer in different proportions (10, 20, 40 and 60%). 120 specimens were fabricated and submitted to conventional heat-polymerization. For impact test, a Charpy-type impact tester was used. Fracture resistance was assessed with a 3-point bending test by using a mechanical testing machine. Ten specimens were used for each test. Fracture (MPa) and impact resistance values (J.m-1) were submitted to ANOVA - Bonferroni's test - 5% significance level. Materials with higher amount of elastomer had statistically significant differences regarding to impact resistance (p < 0.05). Fracture resistance was superior (p < 0.01) for high-resistance acrylic resin. The increase in elastomer concentration added to polymethyl methacrylate raised the impact resistance and decreased the fracture resistance. Processing the material by injection decreased its resistance to impact and fracture.
Resumo:
Introduction. This protocol aims at ( a) evaluating the resistance to post-harvest diseases within different genotypes of bananas, and ( b) comparing different origins of bananas ( geographic origin, physiological stage, etc.) for their susceptibility to post-harvest diseases. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. Materials required and details of the twelve steps of the protocol ( fruit sampling and inoculum preparation, wound anthracnose resistance study, quiescent anthracnose resistance study and crown-rot resistance study) are described. Results. Typical symptoms of the different diseases are obtained after artificial inoculation.