943 resultados para soil pH, nutrient
Resumo:
As áreas destinadas à cultura de cana-de-açúcar estão concentradas em áreas de Cerrado, que são solos ácidos, com elevada saturação por alumínio e baixa saturação por bases. Para correção destas características, faz-se o uso de corretivos e fertilizantes no momento da implantação da cultura. Embora a toxidez por alumínio seja uma das mais sérias limitações ao crescimento de plantas em solos ácidos, há uma carência de estudos relacionando-a com a cultura de cana-de-açúcar. Com base nisto, o objeto deste trabalho foi avaliar o efeito da aplicação de calcário e gesso sobre o estado nutricional de quatro cultivares de cana-de-açúcar, distintas quanto à exigência nutricional, na fase de perfilhamento da cultura. Para tanto, desenvolveu-se experimento em casa de vegetação com vasos contendo 4 kg de amostra de solo, com saturação por alumínio de 29%, como substrato, com os seguintes tratamentos: 1) aplicação de calcário, 2) aplicação de gesso, e 3) controle, sem adição de calcário e gesso. Os cultivares utilizados foram: IACSP95-5000, IACSP94-2094, SP80-3280 e IAC95-3028. Após adição dos tratamentos, as amostras de solo foram incubadas por 45 dias. Para os materiais vegetais, mini-toletes de gema única das cultivares foram pré-brotados, crescidos por 90 dias e transplantados para os vasos, para os respectivos tratamentos. As plantas foram adubadas com macro e micronutrientes e cultivadas por 60 dias. Os tratamentos foram caracterizados quanto aos atributos químicos para avaliação da fertilidade após a incubação e após a coleta das plantas. Nas plantas, foram feitas avaliações de: clorofila, flavonoides, índice de balanço do nitrogênio (NBI), concentração de alumínio e dos nutrientes e produção de matéria seca de folha, colmo e raiz. Enquanto o tratamento gesso não diferiu do controle, o tratamento calcário foi efetivo para correção da reação da amostra de solo, com elevação dos valores de pH e saturação por bases, e redução da saturação por alumínio e acidez total, além do aumento nos teores de Ca e Mg. A adubação NPK+micro foi efetiva para aumentar os teores de P e K dos substratos de todos os tratamentos. Nas plantas, para todos os cultivares, os índices de clorofila, flavonoides e NBI foram mais adequados no tratamento calcário, em relação ao controle e ao gesso. A produção de matéria seca total e das partes das plantas, de modo geral, foi maior para a IACSP95-5000, intermediaria para a IACSP35-3028 e menor para a IACSP94-2094 e SP80-3280. Quanto aos tratamentos, não houve efeito do calcário e gesso sobre a produção de matéria seca de folha, contudo, houve aumento de produção de matéria seca de colmo e raiz pelo calcário, na cultivar IACSP95-5000. Independente do tratamento, as cultivares apresentaram concentração de alumínio superior a 5000 mg kg-1 nas raízes e inferiores a 360 e 160 mg kg-1 nas folhas e colmos, respectivamente, evidenciando que o Al foi acúmulo nas raízes das plantas. De modo geral, as concentrações de macro e micronutrientes variaram com os tratamentos e cultivares, porém sem valores altos e baixos extremos. Concluiu-se que a cultivar IACSP95-5000 tem maior potencial de produção em resposta à aplicação de calcário e que a saturação de alumínio de 29% não apresenta efeito negativo sobre a produção de matéria seca, exceto da cultivar IACSP95-5000, e estado nutricional das cultivares de cana-de-açúcar
Resumo:
Soil enzymes are critical to soil nutrient cycling function but knowledge on the factors that control their response to major disturbances such as wildfires remains very limited. We evaluated the effect of fire-related plant functional traits (resprouting and seeding) on the resistance and resilience to fire of two soil enzyme activities involved in phosphorus and carbon cycling (acid phosphatase and β-glucosidase) in a Mediterranean shrublands in SE Spain. Using experimental fires, we compared four types of shrubland microsites: SS (vegetation patches dominated by seeder species), RR (patches dominated by resprouter species), SR (patches co-dominated by seeder and resprouter species), and IP (shrub interpatches). We assessed pre- and post-fire activities of the target soil enzymes, available P, soil organic C, and plant cover dynamics over three years after the fire. Post-fire regeneration functional groups (resprouter, seeder) modulated both pre- and post-fire activity of acid phosphatase and β-glucosidase, with higher activity in RR and SR patches than in SS patches and IP. However, we found no major differences in enzyme resistance and resilience between microsite types, except for a trend towards less resilience in SS patches. Fire similarly reduced the activity of both enzymes. However, acid phosphatase and β-glucosidase showed contrasting post-fire dynamics. While β-glucosidase proved to be rather resilient to fire, fully recovering three years after fire, acid phosphatase showed no signs of recovery in that period. Overall, the results indicate a positive influence of resprouter species on soil enzyme activity that is very resistant to fire. Long-lasting decrease in acid phosphatase activity probably resulted from the combined effect of P availability and post-fire drought. Our results provide insights on how plant functional traits modulate soil biochemical and microbiological response to fire in Mediterranean fire-prone shrublands.
Resumo:
Extensive application of vinasse, a subproduct from sugar cane plantations for bioethanol production, is currently taking place as a source of nutrients that forms part of agricultural management in different agroclimatic regions. Liquid vinasse composition is characterised by high variability of organic compounds and major ions, acid pH (4.7), high TDS concentration (117,416–599,400 mg L− 1) and elevated EC (14,350–64,099 μS cm− 1). A large-scale sugar cane field application is taking place in Valle del Cauca (Colombia), where monitoring of soil, unsaturated zone and the aquifer underneath has been made since 2006 to evaluate possible impacts on three experimental plots. For this assessment, monitoring wells and piezometers were installed to determine groundwater flow and water samples were collected for chemical analysis. In the unsaturated zone, tensiometers were installed at different depths to determine flow patterns, while suction lysimeters were used for water sample chemical determinations. The findings show that in the sandy loam plot (Hacienda Real), the unsaturated zone is characterised by low water retention, showing a high transport capacity, while the other two plots of silty composition presented temporal saturation due to La Niña event (2010–2011). The strong La Niña effect on aquifer recharge which would dilute the infiltrated water during the monitoring period and, on the other hand dissolution of possible precipitated salts bringing them back into solution may occur. A slight increase in the concentration of major ions was observed in groundwater (~ 5% of TDS), which can be attributed to a combination of factors: vinasse dilution produced by water input and hydrochemical processes along with nutrient removal produced by sugar cane uptake. This fact may make the aquifer vulnerable to contamination.
Resumo:
Limited availability of P in soils to crops may be due to deficiency and/or severe P retention. Earlier studies that drew on large soil profile databases have indicated that it is not (yet) feasible to present meaningful values for "plant-available" soil P, obtained according to comparable analytical methods, that may be linked to soil geographical databases derived from 1:5 million scale FAO Digital Soil Map of the World, such as the 5 x 5 arc-minute version of the ISRIC-WISE database. Therefore, an alternative solution for studying possible crop responses to fertilizer-P applied to soils, at a broad scale, was sought. The approach described in this report considers the inherent capacity of soils to retain phosphorus (P retention), in various forms. Main controlling factors of P retention processes, at the broad scale under consideration, are considered to be pH, soil mineralogy, and clay content. First, derived values for these properties were used to rate the inferred capacity for P retention of the component soil units of each map unit (or grid cell) using four classes (i.e., Low, Moderate, High, and Very High). Subsequently, the overall soil phosphorus retention potential was assessed for each mapping unit, taking into account the P-ratings and relative proportion of each component soil unit. Each P retention class has been assigned to a likely fertilizer P recovery fraction, derived from the literature, thereby permitting spatially more detailed, integrated model-based studies of environmental sustainability and agricultural production at the global and continental level (< 1:5 million). Nonetheless, uncertainties remain high; the present analysis provides an approximation of world soil phosphorus retention potential.
Resumo:
A 2.9 m long sedimentary record was studied from a small lake, here referred to as Duck Lake, located at 76°25'N, 18°45'W on Store Koldewey, an elongated island off the coast of Northeast Greenland. The sediments were investigated for their geophysical and biogeochemical characteristics, and for their fossil chironomid assemblages. Organic matter began to accumulate in the lake at 9.1 cal. kyr BP, which provides a minimum age for the deglaciation of the basin. Although the early to mid-Holocene is known as a thermal maximum in East Greenland, organic matter accumulation in the lake remained low during the early Holocene, likely due to late plant immigration and lack of nutrient availability. Organic matter accumulation increased during the middle and late Holocene, when temperatures in East Greenland gradually decreased. Enhanced soil formation probably led to higher nutrient availability and increased production in the lake. Chironomids are abundant throughout the record after 9.1 cal. kyr BP and seem to react sensitively to changes in temperature and nutrient availability. It is concluded that relative temperature reconstructions based on biogeochemical data have to be regarded critically, particularly in the period shortly after deglaciation when nutrient availability was low. Chironomids may be a suitable tool for climatic reconstructions even in those high arctic environments. However, a better understanding of the ecology of chironomids under these extreme conditions is needed.
Resumo:
High-latitude ecosystems store large amounts of carbon (C); however, the C storage of these ecosystems is under threat from both climate warming and increased levels of herbivory. In this study we examined the combined role of herbivores and climate warming as. drivers of CO2 fluxes in two typical high-latitude habitats (mesic heath and wet meadow). We hypothesized that both herbivory and climate warming would reduce the C sink strength of Arctic tundra through their combined effects on plant biomass and gross ecosystem photosynthesis and on decomposition rates and the abiotic environment. To test this hypothesis we employed experimental warming (via International Tundra Experiment [ITEX] chambers) and grazing (via captive Barnacle Geese) in a three-year factorial field experiment. Ecosystem CO2 fluxes (net ecosystem exchange of CO2, ecosystem respiration, and gross ecosystem photosynthesis) were measured in all treatments at varying intensity over the three growing seasons to capture the impact of the treatments on a range of temporal scales (diurnal, seasonal, and interannual). Grazing and warming treatments had markedly different effects on CO2 fluxes in the two tundra habitats. Grazing caused a strong reduction in CO2 assimilation in the wet meadow, while warming reduced CO2 efflux from the mesic heath. Treatment effects on net ecosystem exchange largely derived from the modification of gross ecosystem photosynthesis rather than ecosystem respiration. In this study we have demonstrated that on the habitat scale, grazing by geese is a strong driver of net ecosystem exchange of CO2, with the potential to reduce the CO2 sink strength of Arctic ecosystems. Our results highlight that the large reduction in plant biomass due to goose grazing in the Arctic noted in several studies can alter the C balance of wet tundra ecosystems. We conclude that herbivory will modulate direct climate warming responses of Arctic tundra with implications for the ecosystem C balance; however, the magnitude and direction of the response will be habitat-specific.
Resumo:
Soil degradation threatens agricultural production and food security in Sub-Saharan Africa. In the coming decades, soil degradation, in particular soil erosion, will become worse through the expansion of agriculture into savannah and forest and changes in climate. This study aims to improve the understanding of how land use and climate change affect the hydrological cycle and soil erosion rates at the catchment scale. We used the semi-distributed, time-continuous erosion model SWAT (Soil Water Assessment Tool) to quantify runoff processes and sheet and rill erosion in the Upper Ouémé River catchment (14500 km**2, Central Benin) for the period 1998-2005. We could then evaluate a range of land use and climate change scenarios with the SWAT model for the period 2001-2050 using spatial data from the land use model CLUE-S and the regional climate model REMO. Field investigations were performed to parameterise a soil map, to measure suspended sediment concentrations for model calibration and validation and to characterise erosion forms, degraded agricultural fields and soil conservation practices. Modelling results reveal current "hotspots" of soil erosion in the north-western, eastern and north-eastern parts of the Upper Ouémé catchment. As a consequence of rapid expansion of agricultural areas triggered by high population growth (partially caused by migration) and resulting increases in surface runoff and topsoil erosion, the mean sediment yield in the Upper Ouémé River outlet is expected to increase by 42 to 95% by 2025, depending on the land use scenario. In contrast, changes in climate variables led to decreases in sediment yield of 5 to 14% in 2001-2025 and 17 to 24% in 2026-2050. Combined scenarios showed the dominance of land use change leading to changes in mean sediment yield of -2 to +31% in 2001-2025. Scenario results vary considerably within the catchment. Current "hotspots" of soil erosion will aggravate, and a new "hotspot" will appear in the southern part of the catchment. Although only small parts of the Upper Ouémé catchment belong to the most degraded zones in the country, sustainable soil and plant management practices should be promoted in the entire catchment. The results of this study can support planning of soil conservation activities in Benin.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
in two feeding experiments male and mixed-sex broiler chicks were offered diets based on sorghum and a wheat-sorghum blend with two tiers of nutrient specifications, without and with microbial phytase (600 and 800 FTU/kg), from 7-25 and 1-42 days post-hatch, respectively. The nutrient specifications for protein, amino acids, energy density and phosphorus (P) of standard diets were reduced to formulate the modified diets on a least-cost basis. Calculated differences in nutrient specifications between standard and modified diets ranged from 14.3 to 17.1 g/kg crude protein, 0.24 to 0.40 MJ/kg apparent metabolisable energy (AME) and 1.06 to 1.20 g/kg available P. In both experiments, reduced nutrient specifications had a negative impact on growth rates and feed efficiency and phytase supplementation had a positive influence on growth performance and protein efficiency ratios (PER). Phytase addition to the less expensive, modified diets either partially or entirely compensated for reduced growth performance and, consequently, feed costs per kg of live weight gain were reduced. In Experiment 1, phytase increased (p<0.001) nitrogen-corrected AME (AMEn) from 15.39 to 15.89 MJ/kg dry matter. For nitrogen (N) retention there was an interaction (p<0.05) between diet type and phytase as the effects of phytase on N retention were more pronounced in the modified diets, with an increase from 0.512 to 0.561. These results demonstrate the positive effects of phytase on protein and energy utilisation, in addition to its established liberation of phytate-bound P and illustrate the feasibility of assigning nutrient replacement values to the feed enzyme for consideration in least-cost ration formulations. Further work is, however, required to define the most appropriate reductions in nutrient specifications in association with phytase supplementation.
Resumo:
Individual and combined supplementation of phosphorus-adequate, wheat-based broiler diets with exogenous phytase and xylanase was evaluated in three experiments. The effects of the enzyme combination in lysine-deficient diets containing wheat and sorghum were more pronounced than those of the individual feed enzymes. The inclusion of phytase plus xylanase improved (p<0.05) weight gains (7.3%) and feed efficiency (7.0%) of broilers (7-28 days post-hatch) and apparent metabolisable energy (AME) by 0.76 MJ/kg DM. Phytase plus xylanase increased (p<0.05) the overall, apparent ileal digestibility of amino acids by 4.5% (0.781 to 0.816); this was greater than the responses to either phytase (3.6%; 0.781 to 0.809) or xylanase (0.7%; 0.781 to 0.784). Absolute increases in amino acid digestibility with the combination exceeded the sum of the individual increases generated by phytase and xylanase for alanine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine and valine. These synergistic responses may have resulted from phytase and xylanase having complementary modes of action for enhancing amino acid digestibilities and/or facilitating substrate access. The two remaining experiments were almost identical except wheat used in Experiment 2 had a higher phytate concentration and a lower estimated AME content than wheat used in Experiment 3. Individually, phytase and xylanase were generally more effective in Experiment 2, which probably reflects the higher dietary substrate levels present. Phytase plus xylanase increased (p<0.05) gains (15.4%) and feed efficiency (7.0%) of broiler chicks from 4-24 days post-hatch in Experiment 2; whereas, in Experiment 3, the combination increased (p<0.05) growth to a lesser extent (5.6%) and had no effect on feed efficiency. This difference in performance responses appeared to be 'protein driven' as the combination increased (p<0.05) nitrogen retention in Experiment 2 but not in Experiment 3; whereas phytase plus xylanase significantly increased AME in both experiments. In Experiments 2 and 3 the combined inclusion levels of phytase and xylanase were lower that the individual additions, which demonstrates the benefits of simultaneously including phytase and xylanase in wheat-based poultry diets.
Resumo:
In variable charge soils, anion retention and accumulation through adsorption at exchange sites is a competitive process. The objectives of this study in the wet tropics of far north Queensland were to investigate (i) whether the pre-existing high sulphate in variable charge soils had any impact on the retention of chloride and nitrate, derived mostly from the applied fertilizer; and (ii) whether chloride competed with nitrate during the adsorption processes. Soil cores up to 12.5 m depth were taken from seven sites, representing four soil types, in the Johnstone River Catchment. Six of these sites had been under sugarcane (Saccharum officinarum-S) cultivation for at least 50 years and one was an undisturbed rainforest. The cores were segmented at 1.0 m depth increments, and subsamples were analysed for nitrate-N, cation (CEC)- and anion-exchange capacities (AEC), pH, exchangeable cations (Ca, Mg, K, Na), soil organic C (SOC), electrical conductivity (EC), sulphate-S, and chloride. Sulphate-S load in 1-12 m depth under cropping ranged from 9.4 to 73.9 t ha(-1) (mean= 40 t ha(-1)) compared with 74.4 t ha(-1) in the rainforest. Chloride load under cropping ranged from 1.5 to 9.6 t ha(-1) (mean= 4.9 t ha(-1)) compared to 0.9 t ha(-1) in the rainforest, and the nitrate-N load from 113 to 2760 kg ha(-1) (mean = 910 kg ha(-1)) under cropping compared to 12 kg ha(-1) in the rainforest. Regardless of the soil type, the total chloride or nitrate-N input in fertilisers was 7.5 t ha(-1), during the last 50 years. Sulphate-S distribution in soil profiles decreased with depth at >2 m, whereas bulges of chloride or nitrate-N were observed at depths >2 m. This suggests that chloride or nitrate adsorption and retention increased with decreasing sulphate dominance. Abrupt decreases in equivalent fraction of sulphate (EFSO4), at depths >2 m, were accompanied by rapid increases in equivalent fraction of chloride (EFCl), followed by nitrate (EFNO3). The stepwise regression for EFCl and EFNO3 indicated that nitrate retention was reduced by the pre-existing sulphate and imported chloride, whereas only sulphate reduced chloride adsorption. The results indicate that chloride and nitrate adsorption and retention occurred, in the order chloride>nitrate, in soils containing large amounts of sulphate under approximately similar total inputs of N- and Cl-fertilisers. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A pulse of chromated copper arsenate (CCA, a timber preservative) was applied in irrigation water to an undisturbed field soil in a laboratory column. Concentrations of various elements in the leachate from the column were measured during the experiment. Also, the remnants within the soil were measured at the end of the experiment. The geochemical modelling package, PHREEQC-2, was used to simulate the experimental data. Processes included in the CCA transport modelling were advection, dispersion, non-specific adsorption (cation exchange) and specific adsorption by clay minerals and organic matter, as well as other possible chemical reactions such as precipitation/dissolution. The modelling effort highlighted the possible complexities in CCA transport and reaction experiments. For example, the uneven dosing of CCA as well as incomplete knowledge of the soil properties resulted in simulations that gave only partial, although reasonable, agreement with the experimental data. Both the experimental data and simulations show that As and Cu are strongly adsorbed and therefore, will mostly remain at the top of the soil profile, with a small proportion appearing in leachate. On the other hand, Cr is more mobile and thus it is present in the soil column leachate. Further simulations show that both the quantity of CCA added to the soil and the pH of the irrigation water will influence CCA transport. Simulations suggest that application of larger doses of CCA to the soil will result in higher leachate concentrations, especially for Cu and As. Irrigation water with a lower pH will dramatically increase leaching of Cu. These results indicate that acidic rainfall or significant accidental spillage of CCA will increase the risk of groundwater pollution.
Resumo:
On-site wastewater treatment and dispersal systems (OWTS) are used in non-sewered populated areas in Australia to treat and dispose of household wastewater. The most common OWTS in Australia is the septic tank-soil absorption system (SAS) - which relies on the soil to treat and disperse effluent. The mechanisms governing purification and hydraulic performance of a SAS are complex and have been shown to be highly influenced by the biological zone (biomat) which develops on the soil surface within the trench or bed. Studies suggest that removal mechanisms in the biomat zone, primarily adsorption and filtering, are important processes in the overall purification abilities of a SAS. There is growing concern that poorly functioning OWTS are impacting upon the environment, although to date, only a few investigations have been able to demonstrate pollution of waterways by on-site systems. In this paper we review some key hydrological and biogeochemical mechanisms in SAS, and the processes leading to hydraulic failure. The nutrient and pathogen removal efficiencies in soil absorption systems are also reviewed, and a critical discussion of the evidence of failure and environmental and public health impacts arising from SAS operation is presented. Future research areas identified from the review include the interactions between hydraulic and treatment mechanisms, and the biomat and sub-biomat zone gas composition and its role in effluent treatment.
Resumo:
Soil properties that influence water movement through profiles are important for determining flow paths, reactions between soil and solute, and the ultimate destination of solutes. This is particularly important in high rainfall environments. For highly weathered deep profiles, we hypothesize that abrupt changes in the distribution of the quotient [QT = (silt + sand)/clay] reflect the boundaries between textural units or textural (TS) and hydrologic (HS) stratigraphies. As a result, QT can be used as a parameter to characterize TS and as a surrogate for HS. Secondly, we propose that if chloride distributions were correlated with QT, under non-limiting anion exchange, then chloride distributions can be used as a signature indicator of TS and HS. Soil cores to a depth of 12.5 in were taken from 16 locations in the wet tropical Johnstone River catchment of northeast Queensland, Australia. The cores belong to nine variable charge soil types and were under sugarcane (Saccharun officinarum-S) production, which included the use of potassium chloride, for several decades. The cores were segmented at I m depth increments and subsamples were analysed for chloride, pH, soil water content (theta), clay, silt and sand contents. Selected bores were capped to serve as piezometers to monitor groundwater dynamics. Depth incremented QT, theta and chloride correlated, each individually, significantly with the corresponding profile depth increments, indicating the presence of textural, hydrologic and chloride gradients in profiles. However, rapid increases in QT down the profile indicated abrupt changes in TS, suggesting that QT can be used as a parameter to characterize TS and as a surrogate for HS. Abrupt changes in chloride distributions were similar to QT, suggesting that chloride distributions can be used as a signature indicator of QT (TS) and HS. Groundwater data indicated that chloride distributions depended, at least partially, on groundwater dynamics, providing further support to our hypothesis that chloride distribution can be used as a signature indicator of HS. Copyright (c) 2005 John Wiley & Sons, Ltd.