913 resultados para small cell carcinoma


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-small cell lung cancer (NSCLC) is the most common cause of cancer related death in the world. Cisplatin and carboplatin are the most commonly used cytotoxic chemotherapeutic agents to treat the disease. These agents, usually combined with drugs such as gemcitabine or pemetrexed, induce objective tumor responses in only 20-30% of patients. Aberrant epigenetic regulation of gene expression is a frequent event in NSCLC. In this article we review the emerging evidence that epigenetics and the cellular machinery involved with this type of regulation may be key elements in the development of cisplatin resistance in NSCLC. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite developments in diagnosis and treatment, lung cancer is the commonest cause of cancer death in Europe and North America. Due to increasing cigarette consumption, the incidence of the disease and resultant mortality is rising dramatically in women. Novel approaches to the management of lung cancer are urgently required. Somatostatin is a tetradecapeptide first identified in the pituitary and subsequently throughout the body particularly in neuroendocrine cells of the pancreas and gastrointestinal tract and the nervous system. The peptide has numerous functions including inhibition of hormone release, immunomodulation and neurotransmission and is an endogenous inhibitor of cell proliferation and angiogenesis. Somatostatin and its analogs, including octreotide (SMS 201-995), somatuline (BIM 23014) and vapreotide (RC-160), act by binding to specific somatostatin receptors (SSTR) of which there are 5 principal subtypes, SSTR-1-5. Although elevated plasma somatostatin levels may be detected in 14-15% of patients, tumor cell expression appears rare. SSTR may be expressed by lung tumors, particularly small cell lung cancer and bronchial carcinoid disease. [111In]pentetreotide scintigraphy may have a role to play in the localization and staging of lung cancers both before and following treatment, and in detecting relapsed disease. The potential role of radiolabelled somatostatin analogs as radiotherapeutic agents in the management of lung cancer is currently being explored. Somatostatin analog therapy results in significant growth inhibition of both SSTR-positive and SSTR-negative lung tumors in vivo. Recent work indicates that these agents may enhance the efficacy of chemotherapeutic agents in the treatment of solid tumors including lung cancer. Copyright © 2001 S. Karger AG, Basel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The metabolism of arachidonic acid through lipoxygenase pathways leads to the generation of various biologically active eicosanoids. The expression of these enzymes vary throughout the progression of various cancers, and thereby they have been shown to regulate aspects of tumor development. Substantial evidence supports a functional role for lipoxygenase-catalyzed arachidonic and linoleic acid metabolism in cancer development. Pharmacologic and natural inhibitors of lipoxygenases have been shown to suppress carcinogenesis and tumor growth in a number of experimental models. Signaling of hydro[peroxy]fatty acids following arachidonic or linoleic acid metabolism potentially effect diverse biological phenomenon regulating processes such as cell growth, cell survival, angiogenesis, cell invasion, metastatic potential and immunomodulation. However, the effects of distinct LOX isoforms differ considerably with respect to their effects on both the individual mechanisms described and the tumor being examined. 5-LOX and platelet type 12-LOX are generally considered pro-carcinogenic, with the role of 15-LOX-1 remaining controversial, while 15-LOX-2 suppresses carcinogenesis. In this review, we focus on the molecular mechanisms regulated by LOX metabolism in some of the major cancers. We discuss the effects of LOXs on tumor cell proliferation, their roles in cell cycle control and cell death induction, effects on angiogenesis, migration and the immune response, as well as the signal transduction pathways involved in these processes. Understanding the molecular mechanisms underlying the anti-tumor effect of specific, or general, LOX inhibitors may lead to the design of biologically and pharmacologically targeted therapeutic strategies inhibiting LOX isoforms and/or their biologically active metabolites, that may ultimately prove useful in the treatment of cancer, either alone or in combination with conventional therapies. © 2007 Springer Science+Business Media, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Penile cancer is rare and receives little public attention. There are few treatment options for advanced disease. The most active regimen to date is a combination of bleomycin, methotrexate, and cisplatin. However the treatment-related mortality is 11% and hence this combination has not been adapted as a standard of care. We report two cases of advanced penile cancer where a sustained palliative response was observed with combination chemotherapy using cisplatin and gemcitabine. Our experience demonstrates that this is a well tolerated regimen active in this setting. © 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: We present and analyze long-term outcomes following multimodal therapy for esophageal cancer, in particular the relative impact of histomorphologic tumor regression and nodal status. PATIENTS AND METHODS: A total of 243 patients [(adenocarcinoma (n = 170) and squamous cell carcinoma (n = 73)] treated with neoadjuvant chemoradiotherapy in the period 1990 to 2004 were followed prospectively with a median follow-up of 60 months. Pathologic stage and tumor regression grade (TRG) were documented, the site of first failure was recorded, and Kaplan-Meier survival curves were plotted. RESULTS: Thirty patients (12%) did not undergo surgery due to disease progression or deteriorated performance status. Forty-one patients (19%) had a complete pathologic response (pCR), and there were 31(15%) stage I, 69 (32%) stage II, and 72 (34%) stage III cases. The overall median survival was 18 months, and the 5-year survival was 27%. The 5-year survival of patients achieving a pCR was 50% compared with 37% in non-pCR patients who were node-negative (P = 0.86). Histomorphologic tumor regression was not associated with pre-CRT cTN stage but was significantly (P < 0.05) associated with ypN stage. By multivariate analysis, ypN status (P = 0.002) was more predictive of overall survival than TRG (P = 0.06) or ypT stage (P = 0.39). CONCLUSION: Achieving a node-negative status is the major determinant of outcome following neoadjuvant chemoradiotherapy. Histomorphologic tumor regression is less predictive of outcome than pathologic nodal status (ypN), and the need to include a primary site regression score in a new staging classification is unclear. © 2007 Lippincott Williams & Wilkins, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite positive results in large scale chemoprevention trials, many physicians are unaware of the potential cancer preventive properties of drugs in common usage. The antioestrogen tamoxifen and the selective cyclo-oxygenase-2 inhibitor celecoxib have been licensed in the USA for the chemoprevention of breast and colorectal cancers respectively in selected high risk individuals. Similarly, folate and retinol have been shown to decrease the incidence of colorectal cancer and squamous cell carcinoma of the skin respectively in large scale intervention trials. Other retinoids have proved efficacious in the tertiary chemoprevention of cancers of the breast and head/neck. Epidemiological evidence also exists in favour of aspirin, nonsteroidal anti-inflammatory drugs, and angiotensin converting enzyme inhibitors preventing certain cancers. Phytochemicals may represent less toxic alternatives to these agents. Although some of these drugs are available without prescription and most are not yet licensed for use in cancer chemoprevention, physicians and students of medicine should be aware of this accumulating evidence base. Practitioners should be amenable to patient referral to discuss complex issues such as risk estimation or potential benefit from intervention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this review is to identify current chemotherapy treatment for tumours of the oesophagus, stomach, pancreas, and liver. The role of both neoadjuvant, adjuvant, and palliative chemotherapy regimens will be discussed. This review will be of interest to oncologists in clarifying current issues regarding chemotherapy, and to physicians in other medical specialties, to increase their general understanding of benefits and drawbacks of chemotherapy in this patient group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lung cancer is the most important cause of cancer-related mortality. Resectability and eligibility for treatment with adjuvant chemotherapy is determined by staging according to the TNM classification. Other determinants of tumour behaviour that predict disease outcome, such as molecular markers, may improve decision-making. Activation of the gene encoding human telomerase reverse transcriptase (hTERT) is implicated in the pathogenesis of lung cancer, and consequently detection of hTERT mRNA might have prognostic value for patients with early stage lung cancer. A cohort of patients who underwent a complete resection for early stage lung cancer was recruited as part of the European Early Lung Cancer (EUELC) project. In 166 patients expression of hTERT mRNA was determined in tumour tissue by quantitative real-time RT-PCR and related to that of a house-keeping gene (PBGD). Of a subgroup of 130 patients tumour-distant normal tissue was additionally available for hTERT mRNA analysis. The correlation between hTERT levels of surgical samples and disease-free survival was determined using a Fine and Gray hazard model. Although hTERT mRNA positivity in tumour tissue was significantly associated with clinical stage (Fisher's exact test p=0.016), neither hTERT mRNA detectability nor hTERT mRNA levels in tumour tissue were associated with clinical outcome. Conversely, hTERT positivity in adjacent normal samples was associated with progressive disease, 28% of patients with progressive disease versus 7.5% of disease-free patients had detectable hTERT mRNA in normal tissue [adjusted HR: 3.60 (1.64-7.94), p=0.0015]. hTERT mRNA level in tumour tissue has no prognostic value for patients with early stage lung cancer. However, detection of hTERT mRNA expression in tumour-distant normal lung tissue may indicate an increased risk of progressive disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It was Dvorak in 1986 that postulated 'tumours are wounds that do not heal' as they share common cellular and molecular mechanisms, which are active in both wounds and in cancer tissue. Inflammation is a crucial part of the innate immune system that protects against pathogens and initiates adaptive immunity. Acute inflammation is usually a rapid and self-limiting process, however it does not always resolve. This leads to the establishment of a chronic inflammatory state and provides the perfect environment for carcinogenesis. Inflammation and cancer have long had an association, going back as far as Virchow in 1863, when leucocytes were noted in neoplastic tissue. It has been estimated that approximately 25% of all malignancies are initiated or exacerbated by inflammation caused by infectious agents. Furthermore, inflammation is linked to all of the six hallmarks of cancer (evasion of apoptosis, insensitivity to anti-growth signals, unlimited replicative potential, angiogenesis, increase in survival factors and invasion and metastasis). It is thought that inflammation may play a critical role in lung carcinogenesis given that individuals with inflammatory lung conditions have an increased risk of lung cancer development. Cigarette smoking can also induce inflammation in the lung and smokers are at a higher risk of developing lung cancer than non-smokers. However, exposure to a number of environmental agents such as radon, have also been demonstrated as a causative factor in this disease. This chapter will focus on inflammation as a contributory factor in non small cell lung cancer (NSCLC), concentrating primarily on the pathological involvement of the pro-inflammatory cytokines, TNF-α, IL-1β, and the CXC (ELR+) chemokine family. Targeting of inflammatory mediators will also be discussed as a therapeutic strategy in this disease. © 2013 by Nova Science Publishers, Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cisplatin is one of the most potent anticancer agents, displaying significant clinical activity against a variety of solid tumours. To date, cisplatin-based combination treatment remains the most effective systemic chemotherapy for non-small cell lung cancer (NSCLC) patients. Unfortunately, the outcome of cisplatin therapy in NSCLC has reached a plateau due to the development of both intrinsic and acquired resistance that have become a major obstacle in the use of cisplatin in the clinical setting. The molecular mechanisms that underlie chemoresistance are largely unknown. Mechanisms of acquired resistance to cisplatin include reduced intracellular accumulation of the drug, enhanced drug inactivation by metallothionine and glutathione, increased repair activity of DNA damage, and altered expression of oncogenes and regulatory proteins. Cisplatin-induced cytotoxicity is mediated through the induction of apoptosis and cell cycle arrest as a result of cisplatin-DNA adduct formation, which in turn, activates multiple signaling pathways and mediators. These include p53, Bcl-2 family, caspases, cyclins, CDKs, MAPK and PI3K/Akt. Increased expression of anti-apoptotic genes and mutations in the intrinsic apoptotic pathway may also contribute to the inability of cells to detect DNA damage or to induce apoptosis. This chapter will provide an insight into the mechanisms involved in cisplatin resistance and a better understanding of the molecular basis of the cellular response to cisplatin-based chemotherapy in lung cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arachidonic acid metabolism through cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P-450 epoxygenase (EPOX) pathways is responsible for the formation of biologically active eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acid, epoxyeicosatrienoic acid and hydroperoxyeicosatetraenoic acids. Altered eicosanoid expression levels are commonly observed during tumour development and progression of a range of malignancies, including non-small cell lung cancer (NSCLC). Arachidonic acid-derived eicosanoids affect a range of biological phenomena to modulate tumour processes such as cell growth, survival, angiogenesis, cell adhesion, invasion and migration and metastatic potential. Numerous studies have demonstrated that eicosanoids modulate NSCLC development and progression, while targeting these pathways has generally been shown to inhibit tumour growth/progression. Modulation of these arachidonic acid-derived pathways for the prevention and/or treatment of NSCLC has been the subject of significant interest over the past number of years, with a number of clinical trials examining the potential of COX and LOX inhibitors in combination with traditional and novel molecular approaches. However, results from these trials have been largely disappointing. Furthermore, enthusiasm for the use of selective COX-2 inhibitors for cancer prevention/treatment waned, due to their association with adverse cardiovascular events in chemoprevention trials. While COX and LOX targeting may both retain promise for NSCLC prevention and/or treatment, there is an urgent need to understand the downstream signalling mechanisms through which these and other arachidonic acid-derived signalling pathways mediate their effects on tumourigenesis. This will allow for development of safer and potentially more effective strategies for NSCLC prevention and/or treatment. Chemoprevention studies with PGI2 analogues have demonstrated considerable promise, while binding to/signalling through PGE2 receptors have also been the subject of interest for NSCLC treatment. In this chapter, the role of the eicosanoid signalling pathways in non-small cell lung cancer will be discussed. In particular, the effect of the eicosanoids on tumour cell proliferation, their roles in induction of cell death, effects on angiogenesis, migration, invasion and their regulation of the immune response will be assessed, with signal transduction pathways involved in these processes also discussed. Finally, novel approaches targeting these arachidonic acid-derived eicosanoids (using pharmacological or natural agents) for chemoprevention and/or treatment of NSCLC will be outlined. Elucidating the molecular mechanisms underlying the effects of specific or general arachidonic acid pathway modulators may lead to the design of biologically and pharmacologically targeted therapeutic strategies for NSCLC prevention/treatment, which may be used alone or in combination with conventional therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-κB pathway. NF-κB is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anti-cancer target. Here, we describe the role of NF-κB in cancer and in the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signaling by pharmacological intervention will be addressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The PI3K/AKT/mTOR pathway regulates cell growth and proliferation and is often dysregulated in cancer due to mutation, amplification, deletion, methylation and post-translational modifications. We and others have shown that activation of this pathway in non-small cell lung cancer (NSCLC) leads to a more aggressive disease which correlates to poor prognosis for patients. A multitude of selective inhibitors are in development which target key regulators in this pathway, however the success of PI3K targeted inhibition has been hampered by a high rate of innate and acquired resistance. Response to PI3K inhibition may be improved by co-targeting potential mediators of resistance, such as related cell surface receptors or other intracellular signaling pathways which cross-talk with the PI3K pathway. Inhibition of the PI3K pathway may also overcome radioresistance, chemoresistance and immune evasion in NSCLC. The identification of appropriate patient cohorts who will benefit from PI3K co-targeted inhibition strategies will be key to the success of these inhibitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC), with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies. © 2013 Glenn Jenkins et al.