992 resultados para size accuracy
Resumo:
Egg yolk was partially replaced (0, 25, 50, 75, and 100%) with octenyl succinic anhydride (OSA)-modified potato starch in a reduced-fat mayonnaise formulation to curtail the problems associated with high cholesterol and induced allergic reactions. The physicochemical properties included parameters such as: pH, fat content, and emulsion stability of the formulations analyzed. The samples with 75% and 100% egg yolk substitute showed the maximum emulsion stability (>95% after two of months storage), and they were selected according to cholesterol content, particle size distributions, dynamic rheological properties, microstructure, and sensory characteristic. A significant reduction (84-97%) in the cholesterol content was observed in the selected samples. Particle size analysis showed that by increasing the amount of OSA starch, the oil droplets with the peak size of 70 µm engulfed by this compound became larger. The rheological tests elucidated that in the absence of egg yolk, OSA starch may not result in a final product with consistent texture and that the best ratio of the two emulsifiers (OSA starch/egg yolk) to produce stable reduced-fat, low cholesterol mayonnaise is 75/25. The microscopic images confirmed the formation of a stable cohesive layer of starch surrounding the oil droplets emulsified in the samples selected.
Resumo:
We have investigated Russian children’s reading acquisition during an intermediate period in their development: after literacy onset, but before they have acquired well-developed decoding skills. The results of our study suggest that Russian first graders rely primarily on phonemes and syllables as reading grain-size units. Phonemic awareness seems to have reached the metalinguistic level more rapidly than syllabic awareness after the onset of reading instruction, the reversal which is typical for the initial stages of formal reading instruction creating external demand for phonemic awareness. Another reason might be the inherent instability of syllabic boundaries in Russian. We have shown that body-coda is a more natural representation of subsyllabic structure in Russian than onset-rime. We also found that Russian children displayed variability of syllable onset and offset decisions which can be attributed to the lack of congruence between syllabic and morphemic word division in Russian. We suggest that fuzziness of syllable boundary decisions is a sign of the transitional nature of this stage in the reading development and it indicates progress towards an awareness of morphologically determined closed syllables. Our study also showed that orthographic complexity exerts an influence on reading in Russian from the very start of reading acquisition. Besides, we found that Russian first graders experience fluency difficulties in reading orthographically simple words and nonwords of two and more syllables. The transition from monosyllabic to bisyllabic lexical items constitutes a certain threshold, for which the syllabic structure seemed to be of no difference. When we compared the outcomes of the Russian children with the ones produced by speakers of other languages, we discovered that in the tasks which could be performed with the help of alphabetic recoding Russian children’s accuracy was comparable to that of children learning to read in relatively shallow orthographies. In tasks where this approach works only partially, Russian children demonstrated accuracy results similar to those in deeper orthographies. This pattern of moderate results in accuracy and excellent performance in terms of reaction times is an indication that children apply phonological recoding as their dominant strategy to various reading tasks and are only beginning to develop suitable multiple strategies in dealing with orthographically complex material. The development of these strategies is not completed during Grade 1 and the shift towards diversification of strategies apparently continues in Grade 2.
Resumo:
Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.
Resumo:
This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.
Resumo:
Puolijohteiden yleistyttyä vuodesta 1948 alkaen, ovat elektroniset laitteet pienentyneet jatkuvasti tehojen kuitenkin kasvaessa. Kasvaneet tehotiheydet kuitenkin vaikeuttavat laitesuunnittelua, sillä puoljohdekomponenttien suorituskyvylle ja eliniälle on oleellista lämpötilojen ja lämpötilavaihteluiden minimointi. Perinteisen ilmajäähdytyksen lähestyessä rajojaan niin kokonaistehon kuin järkevän energiatehokkuudenkin suhteen, on parhaaksi seuraavaksi teknologiaksi ennustettu kaksifaasijäähdytystä, jonka suorituskyky ja energiatehokkuus ovat vaaditulla tasolla. Kaksifaasijäähdytyksen optimaaliselle toiminnalle tärkeää on hyvin suunniteltu ja tarkasti valmistettu lämmönsiirtopinta, jota kutsutaan mikrokanavistoksi. Pulssitettu laserkaiverrus on edistynyt valmistustekniikka, jonka tarkkuus ja luotettavuus sopisivat mikrokanavistojen valmistamiseen. Laserkaiverruksella saavutettavat lopputulokset vaihtelevat kuitenkin materiaalista riippuen ja kupari – jota käytetään yleisesti lämmönjohteena – on eräs huonoimmin lasertyöstöön reagoivista materiaaleista ja siksi on oleellista selvittää laser-kaiverruksen toimivuutta kuparisten mikrokanavistojen valmistuksessa. Pulssitetun laser-kaiverruksen eri variaatioista nanosekunti-luokan pulssinpituuksilla toimivat laitteet ovat jatkuvan tuotannon kannalta paras vaihtoehto niiden hyvän tuottavuuden, saatavuuden sekä kohtuullisen alkuinvestoinnin vuoksi. Käytännön kaiverruskokeiden perusteella selvisi, että menetelmä on laatunsa ja tarkkuutensa puolesta sopiva varsinaiseen tuotantoon. Kaiverruksen tehokkuus kuparia työstettäessä on kuitenkin ennakoituakin heikompi ja niin valmistus- kuin suunnitelu-prosessikin vaativat vielä jatkotutkimusta ja -kehitystä.
Resumo:
The purpose of this study is to find out how laser based Directed Energy Deposition processes can benefit from different types of monitoring. DED is a type of additive manufacturing process, where parts are manufactured in layers by using metallic powder or metallic wire. DED processes can be used to manufacture parts that are not possible to manufacture with conventional manufacturing processes, when adding new geometries to existing parts or when wanting to minimize the scrap material that would result from machining the part. The aim of this study is to find out why laser based DED-processes are monitored, how they are monitored and what devices are used for monitoring. This study has been done in the form of a literature review. During the manufacturing process, the DED-process is highly sensitive to different disturbances such as fluctuations in laser absorption, powder feed rate, temperature, humidity or the reflectivity of the melt pool. These fluctuations can cause fluctuations in the size of the melt pool or its temperature. The variations in the size of the melt pool have an effect on the thickness of individual layers, which have a direct impact on the final surface quality and dimensional accuracy of the parts. By collecting data from these fluctuations and adjusting the laser power in real-time, the size of the melt pool and its temperature can be kept within a specified range that leads to significant improvements in the manufacturing quality. The main areas of monitoring can be divided into the monitoring of the powder feed rate, the temperature of the melt pool, the height of the melt pool and the geometry of the melt pool. Monitoring the powder feed rate is important when depositing different material compositions. Monitoring the temperature of the melt pool can give information about the microstructure and mechanical properties of the part. Monitoring the height and the geometry of the melt pool is an important factor in achieving the desired dimensional accuracy of the part. By combining multiple different monitoring devices, the amount of fluctuations that can be controlled will be increased. In addition, by combining additive manufacturing with machining, the benefits of both processes could be utilized.
Resumo:
Ancien possesseur : Argenson, Antoine-René de Voyer (1722-1787 ; marquis de Paulmy d')
Resumo:
The allometric scaling relationship observed between metabolic rate (MR) and species body mass can be partially explained by differences in cellular MR (Porter & Brand, 1995). Here, I studied cultured cell lines derived from ten mammalian species to determine whether cells propagated in an identical environment exhibited MR scaling. Oxidative and anaerobic metabolic parameters did not scale significantly with donor body mass in cultured cells, indicating the absence of an intrinsic MR setpoint. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms (West et al., 2002). As such cells were cultured under a variety of physiologically relevant oxygen tensions to investigate the effect of oxygen on cellular metabolic rates. Exposure to higher medium oxygen tensions resulted in increased metabolic rates in all cells. Higher MRs have the potential to produce more reactive oxygen species (ROS) which could cause genomic instability and thus reduced lifespan. Longer-lived species are more resistant to oxidative stress (Kapahi et al, 1999), which may be due to greater antioxidant and/or DNA repair capacities. This hypothesis was addressed by culturing primary dermal fibroblasts from eight mammalian species ranging in maximum lifespan from 5 to 120 years. Only the antioxidant manganese superoxide dismutases (MnSOD) positively scaled with species lifespan (p<0.01). Oxidative damage to DNA is primarily repaired by the base excision repair (BER) pathway. BER enzyme activities showed either no correlation or as in the case of polymerase p correlated, negatively with donor species (p<0.01 ). Typically, mammalian cells are cultured in a 20% O2 (atmospheric) environment, which is several-fold higher than cells experience in vivo. Therefore, the secondary aim of this study was to determine the effect of culturing mammalian cells at a more physiological oxygen tension (3%) on BER, and antioxidant, enzyme activities. Consistently, standard culture conditions induce higher antioxidant and DNA ba.se excision repair activities than are present under a more physiological oxygen concentration. Therefore, standard culture conditions are inappropriate for studies of oxidative stress-induced activities and species differences in fibroblast DNA BER repair capacities may represent differences in ability to respond to oxidative stress. An interesting outcome firom this study was that some inherent cellular properties are maintained in culture (i.e. stress responses) while others are not (i.e. MR).
Resumo:
A distinctive period of global change occurred during the PUocene between the warm Miocene and subsequent Quaternary cooling. Samples from Ocean Drilling Project Site 11 79 (-5586 mbsl, 41°4'N, 159°57'E), Site 881 (-5765 mbsl, 47°6.133'N, 161°29.490'E) and Site 882 (-3255 mbsl, 50°22'N, 167°36'E) were studied to determine the magnitude and composition ofterrigenous flux to the western mid-latitude North Pacific and its relation to climate change in East Asia since the mid-Pliocene. Dust-sized particles (including pollen), sourced from the arid regions and loess plateaus in East Asia are entrained by prevailing westerly winds and transported to the midlatitude northwest North Pacific Ocean. This is recorded by peaks in the total concentration of pollen and spores, as well as the mean grain size of allochthonous and autochthonous silicate material in abyssal marine sediments. Aridification of the Asian interior due to the phased uplift of the Himalayan-Tibetan Plateau created the modem East Asian Monsoon system dominated by a strengthening of the winter monsoon. The winter monsoon is further enhanced during glacials due to the expansion of desert and steppe environments at the expense ofwoodlands and forests recorded by the composition of palynological assemblages. The late Pliocene-Pleistocene glacials at ODP Sites 1 179, 881, and 882 are characterized by increases in grain size, magnetic susceptibility, pollen and spore concentrations around 3.5-3.3, 2.6-2.4, 1.7-1.6, and 0.9-0.7 Ma (ages based on magnetostratigraphic and biostratigraphic datums). The peaks during these times are relatively rich in pollen taxa derived primarily from steppe and boreal vegetation zones, recording cool, dry climates. The overall size increase of sediment and abundance of terrestrial palynomorphs record enhanced wind strength. The increase in magnitude of pollen and spore concentrations as well as grain size record global cooling and Northern Hemisphere glaciation. The peaks in grain size as well as pollen and spore abundance in marine sediments correlate with the mean grain size of loess in East Asia, consistent with the deflation of unarmoured surfaces during glacials. The transport of limiting nutrients to marine environments enhanced sea surface productivity and increased the rate of sediment accumulation.
Resumo:
The influence of male body weight on the aggressive and mating behaviour of male Gryllus integer was studied under laboratory conditions. The relationship between adult age and weight was first determined; female weight increased and male weight decreased with age. Virgin males that had been isolated since the adult molt were paired for similar age and a difference in weight of greater than 200 mg. Paired males and a virgin female were observed in a glass arena for 24 minutes or until a mating occurred. Larger males mated significantly more often than smaller males. Larger males attacked more often, were more successful in aggressive encounters and had more contact with the female. Males that did not mate had lower rates of courtship and mounts than males that mated. Females in trials that did not result in a mating were signifcantly heavier than females in trials that resulted in a mating. Larger males that mated were significantly closer in weight to the weight of the female than larger males in trials that did not result in a mating. Larger males in trials that did not result in a mating had higher rates of aggressive stridulation than larger males that mated. Male weight is therefore important in mating success; fitness traits should theoretically show low genetic variability. However, significant heritability values were found for live weight, dry weight, head width, pronotum width and length, hind femur length and forewing length when estimated from the regression of offspring on mid-parent values, offspring and female and male values separately and full-sib correlations. The heritability of hind femur width was significant when estimated from the regression of offspring on male parent and from full-sib correlations. Heritability estimates of forewing length were significantly higher when estimated from the regression of offspring on female parent than when estimated from the regression of offspring on male parent. High phenotypic, genetic and environmental correlations were found between all pairs of traits. Data on male mating success and the heritability of fitness traits were discussed in terms of the maintenance of genetic variability.
Resumo:
Genetic chimeras made by aggregating early mouse embryos have many uses in developmental biology and have also provided insights into embryonic growth regulation. There is an indication that the embryo can regulate for an increase in size because although aggregation chimeras are twice as big as normal embryos when made, they are born of normal size. Upward regula..... tion of size reduced embryos is also possible. Half embryos made by the isolation or destruction of one of the blastomeres of a 2-cell embryo are also born of normal size. Little is known about the timing or the mechanism of this size regulation. In this study, the timing of size regulation in double and half embryos was clearly established by comparison of cell numbers derived from serial reconstruction of light microscope sections of control and experimental embryos. It was shown that size regulation in double embryos occurred around 6dl6h and in half embryos by 7dOh. Size regulation occurred in all tissues at the same time indicating a single control mechanism for the entire embryo. More detailed examination of the growth of double embryos revealed that size regulation occurred by alteration in cell cycle length~ No excessive cell death was found in double embryos compared to the controls and continuous labelling with [3H] thymidine showed no large non-dividing cell population in double embryos. However, a comparison of the mitotic index of double and control embryos after colcemid treatment, revealed a large difference between the two around 5dl6h to 6d16h. During this period, control embryos underwent a proliferative burst not shown by the double embryos. The mechanism for cell cycle control is not clear; it may be intrinsic to the embryo or determined by the uterine environment. Evidence was found suggesting that differentiation in the postimplantation embryo was cell number dependent. The timing of differentiative events was examined in half, double and control embryos. Proamnion formation, which occurs prior to size regulation, occurs at the same cell number but at different times in the three groups of embryos. However mesoderm which appears after size regulation was seen at the same time in all grollps of embryos.
Resumo:
Previous research has found that victims of crime tend to exhibit asynchronous movement (e.g. Grayson & Stein, 1981), and the fact that victims display different body language suggests that they may be sending inadvertent signals to their own vulnerability (e.g. Murzynski & Degelman, 1996). Body language has also be en linked with s e l f identification as a victim (Wheeler et aI., 2009), and self-identification has be en found to act as a proxy for more severe victimization (Baumer, 2002) and greater fear of crime (Greenberg & Beach, 2004). The first prediction in the present study, then, was that self-perceived vulnerability would be correlated with body language, while number of previous victimizations mayor may not show the same relationship. Findings from the present study indicate that self-perceived vulnerability exhibits a positive correlation with the body language cues that approaches significance r (10) = .45,p =.07, one-tailed. Different types of victimization, however, were not significantly correlated with these cues. A second goal of the study was to examine the relationship between psychopathic traits and accuracy in judgments of vulnerability. Seventy male participants rated the vulnerability of 12 female targets filmed walking down a hallway who had provided selfratings of vulnerability. Individuals scoring higher on Factor 2 and total psychopathy were significantly less discrepant from target self-rat~ngs of vulnerability, r (64) = - .39,p < .001; r (64) = - .29,p >.01, respectively. The final purpose of this study was to determine which body language cues were mos t salient to raters when making judgments of vulnerability. Participants rated the apparent vulnerability of a target in 7 video clips portraying each body language cue in isolation and a natural walk. Results of repeated measures analyses indicate that the videos rated as most vulnerable to victimization were those displaying low energy and l a ck of synchrony, followed by wide stride, short stride, and stiffknees, while the video displaying ne ck stiffness did not receive significantly different ratings from the mode l ' s natural walk. Replication with a larger sample size is necessary to increase confidence in findings and implications.
Resumo:
The main focus of this thesis is to evaluate and compare Hyperbalilearning algorithm (HBL) to other learning algorithms. In this work HBL is compared to feed forward artificial neural networks using back propagation learning, K-nearest neighbor and 103 algorithms. In order to evaluate the similarity of these algorithms, we carried out three experiments using nine benchmark data sets from UCI machine learning repository. The first experiment compares HBL to other algorithms when sample size of dataset is changing. The second experiment compares HBL to other algorithms when dimensionality of data changes. The last experiment compares HBL to other algorithms according to the level of agreement to data target values. Our observations in general showed, considering classification accuracy as a measure, HBL is performing as good as most ANn variants. Additionally, we also deduced that HBL.:s classification accuracy outperforms 103's and K-nearest neighbour's for the selected data sets.
Resumo:
Previously, studies investigating emotional face perception - regardless of whether they involved adults or children - presented participants with static photos of faces in isolation. In the natural world, faces are rarely encountered in isolation. In the few studies that have presented faces in context, the perception of emotional facial expressions is altered when paired with an incongruent context. For both adults and 8- year-old children, reaction times increase and accuracy decreases when facial expressions are presented in an incongruent context depicting a similar emotion (e.g., sad face on a fear body) compared to when presented in a congruent context (e.g., sad face on a sad body; Meeren, van Heijnsbergen, & de Gelder, 2005; Mondloch, 2012). This effect is called a congruency effect and does not exist for dissimilar emotions (e.g., happy and sad; Mondloch, 2012). Two models characterize similarity between emotional expressions differently; the emotional seed model bases similarity on physical features, whereas the dimensional model bases similarity on underlying dimensions of valence an . arousal. Study 1 investigated the emergence of an adult-like pattern of congruency effects in pre-school aged children. Using a child-friendly sorting task, we identified the youngest age at which children could accurately sort isolated facial expressions and body postures and then measured whether an incongruent context disrupted the perception of emotional facial expressions. Six-year-old children showed congruency effects for sad/fear but 4-year-old children did not for sad/happy. This pattern of congruency effects is consistent with both models and indicates that an adult-like pattern exists at the youngest age children can reliably sort emotional expressions in isolation. In Study 2, we compared the two models to determine their predictive abilities. The two models make different predictions about the size of congruency effects for three emotions: sad, anger, and fear. The emotional seed model predicts larger congruency effects when sad is paired with either anger or fear compared to when anger and fear are paired with each other. The dimensional model predicts larger congruency effects when anger and fear are paired together compared to when either is paired with sad. In both a speeded and unspeeded task the results failed to support either model, but the pattern of results indicated fearful bodies have a special effect. Fearful bodies reduced accuracy, increased reaction times more than any other posture, and shifted the pattern of errors. To determine whether the results were specific to bodies, we ran the reverse task to determine if faces could disrupt the perception of body postures. This experiment did not produce congruency effects, meaning faces do not influence the perception of body postures. In the final experiment, participants performed a flanker task to determine whether the effect of fearful bodies was specific to faces or whether fearful bodies would also produce a larger effect in an unrelated task in which faces were absent. Reaction times did not differ across trials, meaning fearful bodies' large effect is specific to situations with faces. Collectively, these studies provide novel insights, both developmentally and theoretically, into how emotional faces are perceived in context.