963 resultados para single-walled carbon nanotube


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To contribute with scientific evidence to the grouping strategy for the safety assessment of multi-walled carbon nanotubes (MWCNTs), this work describes the investigation of the cytotoxic and genotoxic effects of four benchmark MWCNTs in relation to their physicochemical characteristics, using two types of human respiratory cells. The cytotoxic effects were analysed using the clonogenic assay and replication index determination. A 48h-exposure of cells revealed that NM-401 was the only cytotoxic MWCNT in both cell lines, but after 8-days exposure, the clonogenic assay in A549 cells showed cytotoxic effects for all the tested MWCNTs. Correlation analysis suggested an association between the MWCNTs size in cell culture medium and cytotoxicity. No induction of DNA damage was observed after any MWCNTs in any cell line by the comet assay, while the micronucleus assay revealed that both NM-401 and NM-402 were genotoxic in A549 cells. NM-401 and NM-402 are the two longest MWCNTs analyzed in this work, suggesting that length may be determinant for genotoxicity. No induction of micronuclei was observed in Beas-2B cell line and the different effect in both cell lines is explained in view of the size-distribution of MWCNTs in the cell culture medium, rather than cell's specificities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four magnetic carbon nanotube samples (CNTs: undoped, completely N-doped and two selectively N-doped) have been synthesized by chemical vapor deposition. The materials were tested in the catalytic wet peroxide oxidation (CWPO) of highly concentrated 4 nitrophenol solutions (4-NP, 5 g L-1). Relatively mild operating conditions were considered (atmospheric pressure, T = 50 ºC, pH = 3), using a catalyst load of 2.5 g L-1 and the stoichiometric amount of H2O2 needed for the complete mineralization of 4-NP. N doping was identified to influence considerably the CWPO performance of the materials. In particular, undoped CNTs, with a moderate hydrophobicity, favor the controllable and efficient decomposition of H2O2 into highly reactive hydroxyl radicals (HO•), thus showing high catalytic activity for 4-NP degradation. On the other hand, the completely N-doped catalyst, fully hydrophilic, favors a quick decomposition of H2O2 into non-reactive O2 and H2O species. The selectively N-doped amphiphilic catalysts, i.e. hybrid structures containing undoped sections followed by N-doped ones, provided intermediate results, namely: a higher N content favored H2O2 decomposition towards non-reactive H2O and O2 species, whilst a lower N content resulted in the formation of HO•, increasing 4-NP mineralization. Catalyst stability and reusability were also investigated by consecutive CWPO runs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are among the strongest known materials. Their potential as nanoscale reinforcement for cementitious materials is significant, with some reported compressive strength increases in excess of 50%. However, there is a great deal of variability in the results obtained, with some researchers showing zero-to-marginal increases in mechanical properties. One major reason for this is the poor dispersion of CNTs within the cementitious matrix. Many different approaches have been employed to disperse the highly hydrophobic CNTs within water and cement paste, with varying degrees of success. This paper presents the results of dispersion trials undertaken on CNTs within neutral and alkaline aqueous solutions and assesses the relative performance of different surfactants to facilitate dispersion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large-scale, high-powered energy storage system is crucial for addressing the energy problem. The development of high-performance materials is a key issue in realizing the grid-scale applications of energy-storage devices. In this work, we describe a simple and scalable method for fabricating hybrids (graphenepyrrole/ carbon nanotube-polyaniline (GPCP)) using graphene foam as the supporting template. Graphene-pyrrole (G-Py) aerogels are prepared via a green hydrothermal route from two-dimensional materials such as graphene sheets, while a carbon nanotube/polyaniline (CNT/PANI) composite dispersion is obtained via the in situ polymerization method. The functional nanohybrid materials of GPCP can be assembled by simply dipping the prepared G-py aerogels into the CNT/PANI dispersion. The morphology of the obtained GPCP is investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed that the CNT/PANI was uniformly deposited onto the surfaces of the graphene. The as-synthesized GPCP maintains its original three-dimensional hierarchical porous architecture, which favors the diffusion of the electrolyte ions into the inner region of the active materials. Such hybrid materials exhibit significant specific capacitance of up to 350 F g-1, making them promising in large-scale energy-storage device applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a highly sensitive ambient refractive index (RI) sensor based on 81° tilted fiber grating (81°-TFG) structure UV-inscribed in standard telecom fiber (62.5μm cladding radius) with carbon nanotube (CNT) overlay deposition. The sensing mechanism is based on the ability of CNT to induce change in transmitted optical power and the high sensitivity of 81°-TFG to ambient refractive index. The thin CNT film with high refractive index enhances the cladding modes of the TFG, resulting in the significant interaction between the propagating light and the surrounding medium. Consequently, the surrounding RI change will induce not only the resonant wavelength shift but also the power intensity change of the attenuation band in the transmission spectrum. Result shows that the change in transmitted optical power produces a corresponding linear reduction in intensity with increment in RI values. The sample shows high sensitivities of ∼207.38nm/RIU, ∼241.79nm/RIU at RI range 1.344-1.374 and ∼113.09nm/RIU, ∼144.40nm/RIU at RI range 1.374-1.392 (for X-pol and Y-pol respectively). It also shows power intensity sensitivity of ∼ 65.728dBm/RIU and ∼ 45.898 (for X-pol and Y-pol respectively). The low thermal sensitivity property of the 81°-TFG offers reduction in thermal cross-sensitivity and enhances specificity of the sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required. In this work, we have studied the interaction of indopentamethinedioxaborine dye (DOB-719) and single-walled carbon nanotubes (SWNTs) using absorption and photoluminescence (PL) spectroscopy. In the mixture of the dye and the SWNTs we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of SWNT emission (up to 40 nm) in the near-infrared range. The possible mechanism of the interaction between DOB-719 and SWNTs has been proposed. Thus, it can be concluded that DOB-719 dye has promising applications for designing efficient and tailorable optical probes for the detection of SWNTs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single walled carbon nanotubes (SWNTs) were incorporated in polymer nanocomposites based on poly(3-octylthiophene) (P3OT), thermoplastic polyurethane (TPU) or a blend of them. Thermogravimetry demonstrated the success of the purification procedure employed in the chemical treatment of SWNTs prior to composite preparation. Stable dispersions of SWNTs in chloroform were obtained by non-covalent interactions with the dissolved polymers. Composites exhibited glass transitions, melting temperatures and heat of fusion which changed in relation to pure polymers. This behavior is discussed as associated to interactions between nanotubes and polymers. The conductivity at room temperature of the blend (TPU-P3OT) with SWNT is higher than the P3OT/SWNT composite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces an integral approach to the study of plasma-surface interactions during the catalytic growth of selected nanostructures (NSs). This approach involves basic understanding of the plasma-specific effects in NS nucleation and growth, theoretical modelling, numerical simulations, plasma diagnostics, and surface microanalysis. Using an example of plasma-assisted growth of surface-supported single-walled carbon nanotubes, we discuss how the combination of these techniques may help improve the outcomes of the growth process. A specific focus here is on the effects of nanoscale plasma-surface interactions on the NS growth and how the available techniques may be used, both in situ and ex situ to optimize the growth process and structural parameters of NSs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter. © 2013 Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A roll-to-roll compatible, high throughput process is reported for the production of highly conductive, transparent planar electrode comprising an interwoven network of silver nanowires and single walled carbon nanotubes imbedded into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The planar electrode has a sheet resistance of between 4 and 7 Ω □−1 and a transmission of >86% between 800 and 400 nm with a figure of merit of between 344 and 400 Ω−1. The nanocomposite electrode is highly flexible and retains a low sheet resistance after bending at a radius of 5 mm for up to 500 times without loss. Organic photovoltaic devices containing the planar nanocomposite electrodes had efficiencies of ∼90% of control devices that used indium tin oxide as the transparent conducting electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of two different samples of graphene with DNA nucleobases and nucleosides is investigated by isothermal titration calorimetry. The relative interaction energies of the nucleobases decrease in the order guanine (G) > adenine (A) > cytosine (C) > thy mine (T) in aqueous solutions, although the positions of C and T seem to be interchangeable. The same trend is found with the nucleosides. Interaction energies of the A-T and G-C pairs are somewhere between those of the constituent bases. Theoretical calculations including van der Wools interaction and solvation energies give the trend G > A similar to T > C. The magnitudes of the interaction energies of the nucleobases with graphene are similar to those found with single-walled carbon nonotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative investigation of charge transport properties is presented, for polymeric [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)], single-wall carbon nanotube (SWNT) and inorganic (indium tin oxide, ITO), transparent conducting electrodes. The polymeric and nanotube systems show hopping transport at low temperatures, in contrast with the disordered-metal transport in ITO. The low temperature magnetotransport (up to 11 T) and high electric-field transport (up to 500 V/cm) indicate the significant role of nanoscopic scale disorder for charge transport in polymer and nanotube based systems. The results show that characteristic length scales like localization length correlates with the nanomorphology in these systems. Further, the high frequency conductivity measurements (up to 30 MHz) in PEDOT:PSS and SWNT follow the extended pair approximation model [σ(ω)=σ(0)[1+(ω/ω0)s].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the nonlocal elasticity theory has been incorporated into classical Euler-Bernoulli rod model to capture unique features of the nanorods under the umbrella of continuum mechanics theory. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behaviors of nanorods from those of macroscopic rods. Nonlocal Euler-Bernoulli bar model is developed for nanorods. Explicit expressions are derived for wavenumbers and wave speeds of nanorods. The analysis shows that the wave characteristics are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial wave mode where no wave propagation occurs. This is manifested in the spectrum cures as the region where the wavenumber tends to infinite (or wave speed tends to zero). The results can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article deals with the axial wave propagation properties of a coupled nanorod system with consideration of small scale effects. The nonlocal elasticity theory has been incorporated into classical rod/bar model to capture unique features of the coupled nanorods under the umbrella of continuum mechanics theory. Nonlocal rod model is developed for coupled nanorods. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behavior of nanorods from those of macroscopic rods. Explicit expressions are derived for wavenumber, cut-off frequency and escape frequency of nanorods. The analysis shows that the wave characteristics of nanorods are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial or longitudinal wave mode, where no wave propagation occurs. This is manifested in the spectrum cures as the region, where the wavenumber tends to infinite or wave speed tends to zero. The effect of the coupled spring stiffness is also capture in the present analysis. It has been also shown that the cut-off frequency increases as the stiffness of the coupled spring increases and also the coupled spring stiffness has no effect on escape frequency of the axial wave mode in the nanorod. This cut-off frequency is also independent of the nonlocal small scale parameter. The present study may bring in helpful insights while investigating multiple-nanorod-system-models for future nano-optomechanical systems applications. The results can also provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of coupled single-walled carbon nanotubes or coupled nanorods. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of halogen molecules of varying electron affinity, such as iodine monochloride (ICl), bromine (Br(2)), iodine monobromide (IBr) and iodine (I(2)) with single-walled carbon nanotubes (SWNTs) and graphene has been investigated in detail. Halogen doping of the two nanocarbons has been examined using Raman spectroscopy in conjunction with electronic absorption spectroscopy and extensive theoretical calculations. The halogen molecules, being electron withdrawing in nature, induce distinct changes in the electronic states of both the SWNTs and graphene, which manifests with a change in the spectroscopic signatures. Stiffening of the Raman G-bands of the nanocarbons upon treatment with the different halogen molecules and the emergence of new bands in the electronic absorption spectra, both point to the fact that the halogen molecules are involved in molecular charge-transfer with the nanocarbons. The experimental findings have been explained through density functional theory (DFT) calculations, which suggest that the extent of charge-transfer depends on the electron affinities of the different halogens, which determines the overall spectroscopic properties. The magnitude of the molecular charge-transfer between the halogens and the nanocarbons generally varies in the order ICl > Br(2) > IBr > I(2), which is consistent with the expected order of electron affinities.