976 resultados para siliceous zeolite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An intense diatom bloom developed within a strong meridional silicic acid gradient across the Antarctic Polar Front at 61°S, 170°W following stratification of the water column in late October/early November 1997. The region of high diatom biomass and the silicic acid gradient propogated southward across the Seasonal Ice Zone through time, with the maximum diatom biomass tracking the center of the silicic acid gradient. High diatom biomass and high rates of silica production persisted within the silicic acid gradient until the end of January 1998 (ca. 70 d) driving the gradient over 500 km to the south of its original position at the Polar Front. The bloom consumed 30 to >40 µM Si(OH)4 in the euphotic zone between about 60 and 66°S leaving near surface concentrations <2.5 µM and occasionally <1.0 µM in its wake. Integrated biogenic silica concentrations within the bloom averaged 410 mmol Si/m**2 (range 162-793 mmol Si/m**2). Average integrated silica production on two consecutive cruises in December 1997 and January 1998 that sampled the bloom while it was well developed were 27.5±6.9 and 22.6±20 mmol Si/m**2/d, respectively. Those levels of siliceous biomass and silica production are similar in magnitude to those reported for ice-edge diatom blooms in the Ross Sea, Antarctica, which is considered to be among the most productive regions in the Southern Ocean. Net silica production (production minus dissolution) in surface waters during the bloom was 16-21 mmol Si/m**2/d, which is sufficient for diatom growth to be the cause of the southward displacement of the silicic acid gradient. A strong seasonal change in silica dissolution : silica production rate ratios was observed. Integrated silica dissolution rates in the upper 100-150 m during the low biomass period before stratification averaged 64% of integrated production. During the bloom integrated dissolution rates averaged only 23% of integrated silica production, making 77% of the opal produced available for export to depth. The bloom ended in late January apparently due to a mixing event. Dissolution : production rate ratios increased to an average of 0.67 during that period indicating a return to a predominantly regenerative system. Our observations indicate that high diatom biomass and high silica production rates previously observed in the marginal seas around Antarctica also occur in the deep ocean near the Polar Front. The bloom we observed propagated across the latitudinal band overlying the sedimentary opal belt which encircles most of Antarctica implying a role for such blooms in the formation of those sediments. Comparison of our surface silica production rates with new estimates of opal accumulation rates in the abyssal sediments of the Southern Ocean, which have been corrected for sediment focusing, indicate a burial efficiency of <=4.6% for biogenic silica. That efficiency is considerably lower than previous estimates for the Southern Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 125, two serpentinite seamounts were drilled in the Mariana and Izu-Ogasawara forearcs. Together with abundant serpentinized peridotites, low-grade metamorphic rocks were recovered from both seamounts. The metamorphic rocks obtained from Hole 778A on Conical Seamount on the Mariana forearc contain common blueschist facies minerals, lawsonite, aragonite, blue amphibole, and sodic pyroxene. Approximate metamorphic conditions of these rocks are 150° to 250° C and 5 to 6 kb. These rocks are considered to have been uplifted by diapirism of serpentinite from a deeper portion within the subduction zone. This discovery presents direct evidence that blueschist facies metamorphism actually takes place within a subduction zone and provides new insight about trench-forearc tectonics. The diagnostic mineral assemblage of the metamorphic rocks from Holes 783A and 784A on Torishima Forearc Seamount, in the Izu-Ogasawara region, is actinolite + prehnite + epidote, with a subassemblage of chlorite + quartz + albite + H2O, which is typical of low-pressure type, prehnite-actinolite facies of Liou et al. (1985). This metamorphism may represent ocean-floor metamorphism within trapped oceanic crust or in-situ metamorphism that occurred at depths beneath the island-arc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen isotope compositions have been measured on pore waters from sediments of Leg 129 sites in the Pigafetta and East Mariana basins (central western Pacific). Total water (pore + sorbed waters) contents and their dD have been analyzed for three samples that contain smectite but no zeolite so that sorbed water can be attributed to interlayer water. The H budget for pore and total waters implies that interlayer water is 20 per mil to 30 per mil depleted in D compared to pore water. Because the interlayer/total water molar ratio (0.25 to 0.5) in smectitic sediments is very high, interlayer water represents an important reservoir of D-depleted water in sediments. dD depth profiles for pore water at Sites 800 and 801 show breaks related to chert and radiolarite layers and are relatively vertical below. Above these chert units, pore waters are similar to modern seawater but below, they are between -10 per mil and -5.5 per mil. These values could represent little modified pre-Miocene seawater values, which were D-depleted because of the absence of polar caps, and were preserved from diffusive exchange with modern seawater by the relatively impermeable overlying chert layers. At Site 802, dD values of the pore waters show a decrease in the Miocene tuffs from 0 per mil values at the top to -8 per mil at 250 mbsf. Below, dD values are relatively uniform at about -8ë. Miocene tuffs are undergoing low water/rock alteration. A positive covariation of dD and Cl content of pore water in the tuffs suggests that the increase of dD values could result from secondary smectite formation. Low diffusive exchange coupled with D enrichment due to alteration of preglacial waters could explain the observed profile.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment cores recovered from three holes drilled during Ocean Drilling Program Leg 136 include volcaniclastics probably derived from the Hawaiian islands. The volcaniclastics shallower than 10 meters below seafloor are fresh and are composed of basaltic glass (sideromelane), basaltic fragments (mainly tachylite), plagioclase, olivine, pyroxene, and opaque minerals. Most of these glasses are probably products of hydrovolcanism. Visibly, some of these volcaniclastics are recognized as bedded ash layers having thicknesses that range from 5 to 10 cm. However, many volcaniclastics are disrupted by bioturbation to some degree, and are sometimes totally mixed with ambient brown clays. No visible correlative ash layer among these holes was found. It seems that many ash layers thinner than the bedded layers were disrupted by bioturbation because of the low sedimentation rate of volcaniclastics. The volcaniclastics were probably transported one of two ways: through air fall and pelagic settling or through turbidity-current transport. Other archipelagic apron volcaniclastic sediments of volcanic seamounts suggest that turbidite transport is the favored explanation of origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the drilling probes of the Deep Waier Drilling Project, Neogene sediments in a tropical area of the Pacific Ocean are divided into 15 zones based on diatoms. The author shows that a unique zonation may be applied for the entire region. Identification of diatoms zones boundaries was conducted through their direct correlation with nannoplancton, radiolarian and foraminiferal zonal sceals. Their ultra-structure and morphological relationship are being analysed. The mode of siliceous accumulation within the equatorial belt differed through the western central and eastern region since the early Miocene and the difference become more evident from the end of Middle Miocene. The distribution of Neogene diatomaceous silt in the tropical area is controlled by the character of gyre-water circulation and agrees with the modern geographical zonation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 100-m-thick Paleocene sequence of mainly pelagic sediments at ODP Site 1121, on the eastern flanks of the Campbell Plateau, contains few to common radiolarians of relatively low diversity in the lower 40 m (Early to early Late Paleocene) and abundant, diverse radiolarian assemblages in the upper 60 m (mid-Late Paleocene). The 150 taxa recorded from the entire Paleocene interval are thought to under-represent the actual species diversity by at least one half as many morphotypes have not been differentiated below the level of genus. Assemblages in the lower 40 m are similar to those described from onland New Zealand and DSDP Site 208 (northern Lord Howe Rise); they are correlated with South Pacific radiolarian zones RP4 and RP5. Assemblages in the upper 60 m differ from other known Late Paleocene assemblages in the great abundance of plagiacanthids and cycladophorids. Similarities are noted with later Cenozoic cool-water assemblages. This upper interval is correlated with South Pacific zone RP6, as revised herein, based on comparison with faunas from Site 208 and Marlborough, New Zealand. The interval is also correlated with the upper part of North Atlantic zone RP6 (RP6b-c) based on the presence of Aspis velutochlamydosaurus, Plectodiscus circularis and Pterocodon poculum. Other species, such as Buryella tetradica and Buryella pentadica, are valuable for local correlation but exhibit considerable diachroneity between the Pacific, Indian and Atlantic Oceans. An age model for the Paleocene interval at Site 1121, based on well-constrained nannofossil and radiolarian datums, indicates that the rate of compacted sediment accumulation doubles from 15 to 30 mm/ka at the RP5/RP6 zonal boundary. In large part this is due to a sudden and pronounced increase in accumulation rates for all siliceous fossils; radiolarians and larger diatoms increase from <100 to >10 000 specimens/cm2/ka. This apparent increase in biosiliceous productivity is age-equivalent to a mid-Paleocene cooling event (57-59 Ma) identified from global stable isotope records that is associated with the heaviest delta13C values for the entire Cenozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk carbonate content, planktic and benthic foraminiferal assemblages, stable isotope compositions of bulk carbonate and Nuttallides truempyi (benthic foraminifera), and non-carbonate mineralogy were examined across ~30 m of carbonate-rich Paleogene sediment at Deep Sea Drilling Project (DSDP) Site 259, on Perth Abyssal Plain off Western Australia. Carbonate content, mostly reflecting nannofossil abundance, ranges from 3 to 80% and generally exceeds 50% between 35 and 57 mbsf. A clay-rich horizon with a carbonate content of about 37% occurs between 55.17 and 55.37 mbsf. The carbonate-rich interval spans planktic foraminiferal zones P4c to P6b (~57-52 Ma), with the clay-rich horizon near the base of our Zone P5 (upper)-P6b. Throughout the studied interval, benthic species dominate foraminiferal assemblages, with scarce planktic foraminifera usually of poor preservation and limited species diversity. A prominent Benthic Foraminiferal Extinction Event (BFEE) occurs across the clay-rich horizon, with an influx of large Acarinina immediately above. The delta13C records of bulk carbonate and N. truempyi exhibit trends similar to those observed in upper Paleocene-lower Eocene (~57-52 Ma) sediment from other locations. Two successive decreases in bulk carbonate and N. truempyi delta13C of 0.5 and 1.0? characterize the interval at and immediately above the BFEE. Despite major changes in carbonate content, foraminiferal assemblages and carbon isotopes, the mineralogy of the non-carbonate fraction consistently comprises expanding clay, heulandite (zeolite), quartz, feldspar (sodic or calcic), minor mica, and pyrolusite (MnO2). The uniformity of this mineral assemblage suggests that Site 259 received similar non-carbonate sediment before, during and after pelagic carbonate deposition. The carbonate plug at Site 259 probably represents a drop in the CCD from ~57 to 52-51 Ma, as also recognized at other locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clay minerals are examined in detail in the sediment from the Tonga Trench margin at Site 841 (Leg 135 ODP). The changes in amount and nature of secondary clays with depth provide an alternative explanation for the intensive alteration of volcanogenic material at convergent margins. A characteristic distribution of clay minerals with depth shows four distinct zones unexplainable by simple burial diagenesis processes. These are named the upper, reactive, lower and rhyolitic zones. The reactive zone is intercalated with numerous sills and is characterized by the dominant iron-rich clays such as saponite, corrensite and chlorite associated with analcime. The occurrence of such iron-rich clays, mostly associated with a large amount of analcime, yields chemical and mineralogical evidence for thermal diagenesis. The required heat for the diagenetic process was transferred from recently intruded basaltic andesite sills. In the vicinity of these intrusions, the iron-rich clay minerals may have formed at temperatures up to 200°C. A zoning with respect to clay and zeolite minerals indicates that the influence of the palaeoheat flow decreased with the distance from the intrusion. The formation of interlayered I/S, illite, kaolinite and aluminous chlorite, which are recognized as major secondary minerals within the rhyolitic complex, was mainly controlled by both early diagenesis at moderately elevated temperatures, and since the Eocene by burial diagenesis at low temperatures. The occurrence of a steam zone in an early stage of the intrusion is restricted to Miocene tuffs and has overprinted the early alteration of the volcanogenic material within the tuffs and has changed the originally pristine composition of the pore fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic fluctuations in global sea level during epochs of warm greenhouse climate have remained enigmatic, because absence or subordinate presence of polar ice during these periods precludes an explanation by glacio-eustatic forcing. An alternative concept suggests that the water-bearing potential of groundwater aquifers is equal to that of ice caps and that changes in the dynamic balance of aquifer charge versus discharge, as a function of the temperature-related intensity of the hydrological cycle, may have driven eustasy during warm climates. However, this idea has long been neglected for two reasons: 1) the large storage potential of subsurface aquifers was confused with the much smaller capacity of rivers and lakes and 2) empirical data were missing that document past variations in the hydrological cycle in relation to eustasy. In the present study we present the first empirical evidence for changes in precipitation, continental weathering intensity and evaporation that correlate with astronomically (long obliquity) forced sea-level cycles during the warmest period of the Cretaceous (Cenomanian-Turonian). We compare sequence-stratigraphic data with changes in the terrigenous mineral assemblage in a low-latitude marine sedimentary sequence from the equatorial humid belt at the South-Tethyan margin (Levant carbonate platform, Jordan), thereby avoiding uncertainties from land-ocean correlations. Our data indicate covariance between cycles in weathering and sea level: predominantly chemical weathering under wet climate conditions is reflected by dominance of weathering products (clays) in deposits that represent sea-level fall (aquifer charge > discharge). Conversely, preservation of weathering-sensitive minerals (feldspars, epidote and pyroxenes) in transgressive sediments reflects decreased continental weathering due to dryer climate (aquifer discharge > charge). Based on our results we suggest that aquifer-eustasy represents a viable alternative to glacio-eustasy as a driver of cyclic 3rd-order sea-level fluctuations during the middle Cretaceous greenhouse climate, and it may have been a pervasive process throughout Earth history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A composite section, which reconstructs a continuous stratigraphic record from cores of multiple nearby holes, and its associated composite depth scale are important tools for analyzing sediment recovered from a drilling site. However, the standard technique for creating composite depth scales on drilling cruises does not correct for depth distortion within each core. Additionally, the splicing technique used to create composite sections often results in a 10-15% offset between composite depths and measured drill depths. We present a new automated compositing technique that better aligns stratigraphy across holes, corrects depth offsets, and could be performed aboard ship. By analyzing 618 cores from seven Ocean Drilling Program (ODP) sites, we estimate that ?80% of the depth offset in traditional composite depth scales results from core extension during drilling and extraction. Average rates of extension are 12.4 ± 1.5% for calcareous and siliceous cores from ODP Leg 138 and 8.1 ± 1.1% for calcareous and clay-rich cores from ODP Leg 154. Also, average extension decreases as a function of depth in the sediment column, suggesting that elastic rebound is not the dominant extension mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cenozoic Pagodroma Group in the northern Prince Charles Mountains, East Antarctica, is a glaciomarine succession of fjordal character, comprising four uplifted formations of different ages. The composition of the <2 µm fraction of sediments of the Pagodroma Group was analysed in order to help identify source areas, past weathering conditions and glacial regimes. Both clay and non-clay minerals have been quantified. The assemblage of the upper Oligocene to lower Miocene Mount Johnston Formation is characterised by the dominance of illite and intermediate concentrations of chlorite. Similar to that assemblage is the clay mineral suite of the middle Miocene Fisher Bench Formation, where illite and chlorite together account for 95% of the clay minerals. The middle to upper Miocene Battye Glacier Formation is the only formation with significant and persistent smectite concentrations, although illite is still dominant. The kaolinite concentration is also high and is even higher than that of chlorite. The clay fraction of the upper Pliocene to lower Pleistocene Bardin Bluffs Formation is characterised by maximum kaolinite concentrations and relatively low illite and chlorite concentrations. The bulk of the clay fraction in each formation can be explained by the physical weathering and erosion of a nearby source under glacial conditions. In the case of Mount Johnston Formation and Fisher Bench Formation this source may be situated in the metavolcanic and gneissic rocks of Fisher Massif. The sediments of the Bardin Bluffs Formation indicate a local source within the Amery Oasis, where Proterozoic granitoid rocks and gneisses, and Permo-Triassic fluvial rocks of the Amery Group are exposed. These results suggest a strong local imprint on the glacial sediments as northwards flowing ice eroded the bedrock in these areas. The origin of the clay fraction of the Battye Glacier Formation is a matter of debate. The smectite and kaolinite content most easily can be explained by erosion of sources largely hidden beneath the ice upstream. Less likely, these clay minerals reflect climatic conditions that were much warmer and wetter than today, facilitating chemical weathering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foraminiferal assemblages in sediments from Hole 543A suggest that toward the end of the Cretaceous there was an oscillating carbonate compensation depth (CCD) in the western Central Atlantic. Changing assemblages of siliceous agglutinated and calcareous foraminifers reflect the changing depositional environment, from a ridge crest environment during Campanian time to a deep abyssal environment during Maestrichtian time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The book is devoted to investigations of benthic fauna and geology of the Southern Atlantic Ocean. These works have been carried out in terms of exploring biological structure of the ocean and are of great importance for development of this fundamental problem. They are based on material collected during Cruise 43 of R/V Akademik Kurchatov in 1985-1986 and Cruise 43 of R/V Dmitry Mendeleev in 1989. Problems of quantitative distribution, group composition and trophic structure of benthos in the Southern Scotia Sea, along the east-west Transatlantic section along 31°30'S, and offshore Namibia in the area of the Benguela upwelling are under consideration in the book. Authors present new data on fauna of several groups of deep-sea bottom animals and their zoogeography. Much attention is paid to analysis of morphological structure of the Scotia Sea floor considered in terms of plate tectonics. Bottom sediments along the Transatlantic section and facial variation of sediments in the area of South Shetland Islands and of the continental margin of Namibia are under consideration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sites 482, 483, and 485 were drilled during Leg 65 on young oceanic crust south of the Tamayo Transform Fault. The Leg 65 drilling program was part of a multinational effort to study the East Pacific Rise (EPR) and complements sea bottom surveys conducted both in this area (Lewis, 1979; Cyamex Scientific Team and Pastouret, 1981) and farther south at 21 °N (Larson, 1971; Normark, 1976; Cyamex Scientific Team; Rise Project Group, 1980). These studies, which included deep-tow, Angus and submersible surveys, were recently complemented by sea-beam surveys conducted by the Jean Charcot on the Tamayo Fracture Zone and farther south along the EPR. They have led to a better understanding of the magmatic, tectonic, and sedimentary processes occurring on the East Pacific Rise between the Tamayo and Rivera fracture zones. The purpose of this chapter is to describe the metamorphic processes affecting Pliocene through Quaternary sediments found in contact, or inter layered, with basaltic units drilled during Leg 65 at the mouth of the Gulf of California.