962 resultados para shanwang leaf flora
Resumo:
The relationship between the queens' lipid content and nest growth (population size, biomass and nest architecture) was studied from founding up to 1 year. Nests aged 3, 4, 5, 6, 9 and 12 months were dug in the field, and their dimensions were measured. The ant nest population and fungus garden was also collected. The sample was taken to the laboratory where we counted the worker population and weighed the biomass (fungus plus offspring) and queens. Queens were separated for the determination of lipids. The lipid content in the bodies of queens decreased in the first months, then stabilized (at 4-6 months) before increasing in months 9 and 12. Nest biomass (symbiotic fungus and offspring) and worker population increased over time. The structural growth of the nests was observed by excavating around them. Initially nests (3 months old) had one chamber at an average depth of 15 cm. By 1 year, the nests had three or four deep chambers, and were about 3-4 m deep. Our study contributes to knowledge of the dynamics of the energy-reserve expenditure by queens during colony founding and colony development for up to 1 year. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Bulbophyllum section Micranthae comprises 12 species of rupicolous or epiphytic orchids occurring in forests or in open rocky fields in Cerrado/Atlantic Forest ecotones throughout South America. We examined the leaf anatomy of 14 species and compared them with molecular data (nrITS) in phylogenetic analyses. The leaves of Bulbophyllum section Micranthae are characterised by uniseriate epidermis, with periclinal external cell wall thicker than the internal, presence of epicuticular wax, stomata present only on the abaxial surface with suprastomatic chambers, and collateral vascular bundles associated with sclerenchyma fibres. Some of these characters are shared with other rupicolous Orchidaceae species, demonstrating adaptive convergence in xeromorphic habitats. We found some anatomical characteristics with phylogenetic value. Bulbophyllum section Micranthae can be separated into two lineages: those with needle-like leaves, or flat leaves. The analyses show that anatomical characters as well as molecular data may contribute to the development of phylogenetic hypotheses. © 2013 Botanical Society of Sao Paulo.
Resumo:
Ecosystem engineers are organisms that change the physical structure of environments and provide habitats for other organisms. Lepidopteran caterpillars may act as ecosystem engineers by rolling leaves as shelters to complete metamorphosis. After being abandoned, these structures may provide shelter for other organisms. In this study, the influence of leaf-rolling caterpillars on tropical mite communities was reported. Expanded leaves and leaves rolled by larvae and also developed field experiments using leaves rolled manually with different shapes and sizes (i.e. different architectures) in different seasons were surveyed (dry and rainy). While the abundance and diversity of predatory mites were higher in rolled leaves, the abundance of phytophages decreased in these leaves. Species composition differed between rolled and expanded leaves. The structure of shelters affected the distribution of predatory mites, with higher abundances found on funnel-shaped leaves. Predatory mites only benefited from the rolled leaves in the dry season. This is the first study showing (i) the contrasting effects of ecosystem engineers on microarthropod communities, favouring some feeding guilds and inhibiting others; (ii) that the shape of rolled leaves has variable effects on mite communities; and (iii) that facilitation was temporally dependent, i.e. occurred only in the dry season. © 2013 The Royal Entomological Society.
Resumo:
Inferences about leaf anatomical characteristics had largely been made by manually measuring diverse leaf regions, such as cuticle, epidermis and parenchyma to evaluate differences caused by environmental variables. Here we tested an approach for data acquisition and analysis in ecological quantitative leaf anatomy studies based on computer vision and pattern recognition methods. A case study was conducted on Gochnatia polymorpha (Less.) Cabrera (Asteraceae), a Neotropical savanna tree species that has high phenotypic plasticity. We obtained digital images of cross-sections of its leaves developed under different light conditions (sun vs. shade), different seasons (dry vs. wet) and in different soil types (oxysoil vs. hydromorphic soil), and analyzed several visual attributes, such as color, texture and tissues thickness in a perpendicular plane from microscopic images. The experimental results demonstrated that computational analysis is capable of distinguishing anatomical alterations in microscope images obtained from individuals growing in different environmental conditions. The methods presented here offer an alternative way to determine leaf anatomical differences. © 2013 Elsevier B.V.
Resumo:
Mutualistic associations shape the evolution in different organism groups. The association between the leaf-cutter ant Atta sexdens and the basidiomycete fungus Leucoagaricus gongylophorus has enabled them to degrade starch from plant material generating glucose, which is a major food source for both mutualists. Starch degradation is promoted by enzymes contained in the fecal fluid that ants deposit on the fungus culture in cut leaves inside the nests. To understand the dynamics of starch degradation in ant nests, we purified and characterized starch degrading enzymes from the ant fecal fluid and from laboratory cultures of L. gongylophorus and found that the ants intestine positively selects fungal α-amylase and a maltase likely produced by the ants, as a negative selection is imposed to fungal maltase and ant α-amylases. Selected enzymes are more resistant to catabolic repression by glucose and proposed to structure a metabolic pathway in which the fungal α-amylase initiates starch catalysis to generate byproducts which are sequentially degraded by the maltase to produce glucose. The pathway is responsible for effective degradation of starch and proposed to represent a major evolutionary innovation enabling efficient starch assimilation from plant material by leaf-cutters. © 2013 Elsevier Ltd.
Resumo:
Leaf-cutting ants modify the properties of the soil adjacent to their nests. Here, we examined whether such an ant-altered environment impacts the belowground fungal communities. Fungal diversity and community structure of soil from the fungus garden chambers of Atta sexdens rubropilosa and Atta bisphaerica, two widespread leaf-cutting ants in Brazil, were determined and compared with non-nest soils. Culture-dependent methods revealed similar species richness but different community compositions between both types of soils. Penicillium janthinellum and Trichoderma spirale were the prevalent isolates in fungus chamber soils and non-nest soils, respectively. In contrast to cultivation methods, analyses of clone libraries based on the internal transcribed spacer (ITS) region indicated that richness of operational taxonomic units significantly differed between soils of the fungus chamber and non-nest soils. FastUnifrac analyses based on ITS sequences further revealed a clear distinction in the community structure between both types of soils. Plectania milleri and an uncultured Clavariaceae fungus were prevalent in fungus chamber soils and non-nest soils, respectively. FastUnifrac analyses also revealed that fungal community structures of soil from the garden chambers markedly differed among ant species. Our findings suggest that leaf-cutting ants affect fungal communities in the soil from the fungus chamber in comparison to non-nest soils. © 2013 WILEY-VCH Verlag GmbH & Co.
Resumo:
We studied the vegetation of two crystalline rock outcrops in the Atlantic Forest of northeastern Brazil. We recorded typically rupicolous species, which are rare or classified as extremely endangered, such as Aechmea guainumbiorum, found exclusively in one of the study sites. In both areas there was a predominance of therophytes over other life-forms, in contrast to observations made in rock outcrops of the southern Atlantic Forest. Therophytes also stood out in other rock outcrops at similar latitudes as our study site, regardless of the surrounding vegetation. Plants of other life-forms had significantly lower richness and showed adaptations to drought, such as succulent stem, pseudobulbs, dense pilosity, and underground storage organs. Our results suggest that invasive species may modify the vegetation of crystalline rock outcrops, as they change the number of species of all life-forms in comparison between sites. Hence, our results present the biological identity of these rupicolous habitats, which are marginal to forests, and point to the need for conserving them, in order to protect the Atlantic Forest's biodiversity. © 2013 Botanical Society of Sao Paulo.
Resumo:
In this study, a green adsorbent was successfully applied to remove toxic metals from aqueous solutions. Dried minced castor leaves were fractionated into 63-μm particles to perform characterization and extraction experiments. Absorption bands in FTIR (Fourier Transform Infrared Spectroscopy) spectra at 1544, 1232 and 1350 cm-1 were assigned to nitrogen-containing groups. Elemental analysis showed high nitrogen and sulfur content: 5.76 and 1.93%, respectively. The adsorption kinetics for Cd(II) and Pb(II) followed a pseudo-second-order model, and no difference between the experimental and calculated Nf values (0.094 and 0.05 mmol g-1 for Cd(II) and Pb(II), respectively) was observed. The Ns values calculated using the modified Langmuir equation, 0.340 and 0.327 mmol g-1 for Cd(II) and Pb(II), respectively, were superior to the results obtained for several materials in the literature. The method proposed in this study was applied to pre-concentrate (45-fold enrichment factor) and used to measure Cd(II) and Pb(II) in freshwater samples from the Paraná River. The method was validated through a comparative analysis with a standard reference material (1643e). © 2013 Elsevier B.V. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In the present study, we examined how residues of nitrogen (N), phosphorus (P) and calcium (Ca) fertilisers affect leaf anatomical traits in Maprounea brasiliensis (Euphorbiaceae), a typical and dominant cerrado (Brazilian savannah) species adapted to dystrophic soils. We predicted that fertiliser residues would alter qualitative and quantitative aspects of M. brasiliensis leaves and would decrease their scleromorphy. Leaves were sampled from plants that were growing in soils previously fertilised with N, P and Ca and in plants that were growing in soils without fertiliser residues. We measured the thickness of the cuticle, the epidermis of adaxial and abaxial surfaces, thickness of palisade parenchyma and spongy parenchyma, total thickness of the leaf, total area of the midrib and leaf mass per area (LMA). We found that plants under fertiliser residues produced fewer scleromorphic leaves with low LMA, thinner cuticle and epidermis and thicker palisade and spongy parenchyma. They also showed a decrease in the size and area occupied by the leaf midvein. However, plants under fertiliser residues produced similar leaf thickness as did the plants in the control group. Our results showed that residual effects of fertilisation changed structural patterns of a typical species of cerrado. Thus, further studies about fertilisation effects on leaf traits are needed because larger areas of the central cerrado are being occupied for agricultural production. © 2013 CSIRO.
Resumo:
Fungus-growing ants associate with multiple symbiotic microbes, including Actinobacteria for production of antibiotics. The best studied of these bacteria are within the genus Pseudonocardia, which in most fungus-growing ants are conspicuously visible on the external cuticle of workers. However, given that fungus-growing ants in the genus Atta do not carry visible Actinobacteria on their cuticle, it is unclear if this genus engages in the symbiosis with Pseudonocardia. Here we explore whether improving culturing techniques can allow for successful isolation of Pseudonocardia from Atta cephalotes leaf-cutting ants. We obtained Pseudonocardia from 9 of 11 isolation method/colony component combinations from all 5 colonies intensively sampled. The most efficient technique was bead-beating workers in phosphate buffer solution, then plating the suspension on carboxymethylcellulose medium. Placing these strains in a fungus-growing ant-associated Pseudonocardia phylogeny revealed that while some strains grouped with clades of Pseudonocardia associated with other genera of fungus-growing ants, a large portion of the isolates fell into two novel phylogenetic clades previously not identified from this ant-microbe symbiosis. Our findings suggest that Pseudonocardia may be associated with Atta fungus-growing ants, potentially internalized, and that localizing the symbiont and exploring its role is necessary to shed further light on the association.
Resumo:
Background: This study aimed to establish reference values for selected ophthalmic diagnostic tests in healthy neotropical primates from Salvador, Brazil. Methods: A total of 73 intact adults, including Callithrix jacchus (n = 31), Callithrix penicillata (n = 8), Cebus sp. (n = 22), and Cebus xanthosternos (n = 9) were used to evaluate the normal conjunctival bacterial flora. Cebus xanthosternos (n = 12) were used to evaluate tear production with Schirmer's tear test (STT), intraocular pressure (IOP), and conjunctival cytology. Results: For all animals evaluated, Gram-positive bacteria were predominant. Results of the diagnostic tests in Cebus xanthosternos were as follows: STT: 14.92 ± 5.46 mm/minutes, IOP: 19.62 ± 4.57 mmHg, and conjunctival cytology revealed intermediate squamous epithelial cells in great quantities. Conclusions: These ophthalmic reference values will be particularly useful to diagnose discrete or unusual pathological changes in the neotropical primates eye. © 2013 John Wiley & Sons A/S.
Resumo:
The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest-savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Deciduous forests from the neotropics are one of the most endangered forest types in the world due to the exploitation of their natural resources by mankind. Many aspects of these ecosystems have been studied; however, there is a lack of information about leaf structure and the effects of tree dominance on their structural leaf patterns. In this article, we examine leaf anatomy and specific leaf areas (SLA) in 13 tree species differing in their dominance in a Dry Forest site in Central Brazil, relating leaf anatomical traits with phytosociological aspects. Leaf anatomical traits differed according to tree dominance: greater leaf thickness (achieved through greater thickness of the mesophyll), low values of SLA and bigger stomata were found for the most dominant species, whereas the less dominant species showed thinner leaves with high SLA, as well as numerous and small stomata. These responses suggest that tree dominance is an important indirect effect associated with vertical light availability in the forest. These strategies are probably related to the accomplishment of a high performance in carbon gain and water economy, given the distinction in irradiance that the leaves of different species are subject to in the dry forest. © 2013 Copyright The Royal Society of New Zealand.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The leaf-cutter ant Atta laevigata (Formicidae: Attini) is an agricultural pest largely distributed in the Neotropics and a model organism for studies of evolution, speciation and population genetics. Microsatellites are a very powerful tool for these kind of studies, but such markers are not available for studies on A. laevigata. In the present report, we describe the isolation and characterization of nine microsatellite loci in A. laevigata and the testing of these markers across other species of leaf-cutter ants. Findings. Nine microsatellite loci, consisting of six dinucloeotide, one trinucleotide, one tetranucleotide, and one di/trinucleotide repeat motifs, were isolated and characterized. Primers and protocols were successfully designed to selectively amplify these markers. To test effectiveness of these markers for detailed population genetic studies, we genotyped female workers collected from 36 monogynic nests of A. laevigata and found that eight loci were within Hardy-Weinberg expectations, while the remaining locus had a deficiency of heterozygotes. Micro-Checker analysis of individuals from 55 monogynic nests indicated that loci Alae11, Alae24, Alae18 showed signs of null alleles. For the remaining six loci, the number of alleles per locus ranged between 2 and 11, with expected heterozygosity ranging between 0.07 and 0.88. All of these loci cross-amplified in other species of Atta. Conclusions: These six polymorphic microsatellite loci should prove useful for future genetic investigations of the pest species Atta laevigata, as well as studies of other species of leaf-cutter ants in the genus Atta. © 2013 Kakazu et al.; licensee BioMed Central Ltd.