993 resultados para sensor uncertainty


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the design of mobile sensor networks for optimal data collection. The development is strongly motivated by the application to adaptive ocean sampling for an autonomous ocean observing and prediction system. A performance metric, used to derive optimal paths for the network of mobile sensors, defines the optimal data set as one which minimizes error in a model estimate of the sampled field. Feedback control laws are presented that stably coordinate sensors on structured tracks that have been optimized over a minimal set of parameters. Optimal, closed-loop solutions are computed in a number of low-dimensional cases to illustrate the methodology. Robustness of the performance to the influence of a steady flow field on relatively slow-moving mobile sensors is also explored © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a novel label-free graphene sensor array is presented. Detection is based on modification of graphene FET devices and specifically monitoring the change in composition of the nutritive components in culturing medium. Micro-dispensing of Escherichia coli in medium shows feasibility of accurate positioning over each sensor while still allowing cell proliferation. Graphene FET device fabrication, sample dosing, and initial electrical characterisation have been completed and show a promising approach to reducing the sample size and lead time for diagnostic and drug development protocols through a label-free and reusable sensor array fabricated with standard and scalable microfabrication technologies. Copyright © 2012 Ronan Daly et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operational uncertainties such as throttle excursions, varying inlet conditions and geometry changes lead to variability in compressor performance. In this work, the main operational uncertainties inherent in a transonic axial compressor are quantified to deter- mine their effect on performance. These uncertainties include the effects of inlet distortion, metal expansion, ow leakages and blade roughness. A 3D, validated RANS model of the compressor is utilized to simulate these uncertainties and quantify their effect on polytropic efficiency and pressure ratio. To propagate them, stochastic collocation and sparse pseudospectral approximations are used. We demonstrate that lower-order approximations are sufficient as these uncertainties are inherently linear. Results for epistemic uncertainties in the form of meshing methodologies are also presented. Finally, the uncertainties considered are ranked in order of their effect on efficiency loss. © 2012 AIAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coupled hydrology and water quality models are an important tool today, used in the understanding and management of surface water and watershed areas. Such problems are generally subject to substantial uncertainty in parameters, process understanding, and data. Component models, drawing on different data, concepts, and structures, are affected differently by each of these uncertain elements. This paper proposes a framework wherein the response of component models to their respective uncertain elements can be quantified and assessed, using a hydrological model and water quality model as two exemplars. The resulting assessments can be used to identify model coupling strategies that permit more appropriate use and calibration of individual models, and a better overall coupled model response. One key finding was that an approximate balance of water quality and hydrological model responses can be obtained using both the QUAL2E and Mike11 water quality models. The balance point, however, does not support a particularly narrow surface response (or stringent calibration criteria) with respect to the water quality calibration data, at least in the case examined here. Additionally, it is clear from the results presented that the structural source of uncertainty is at least as significant as parameter-based uncertainties in areal models. © 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concepts of reliability, robustness, adaptability, versatility, resilience and flexibility have been used to describe how a system design can mitigate the likely impact of uncertainties without removing their sources. With the increasing number of publications on designing systems to have such ilities, there is a need to clarify the relationships between the different ideas. This short article introduces a framework to compare these different ways in which a system can be insensitive to uncertainty, clarifying their meaning in the context of complex system design. We focus on relationships between the ilities listed above and do not discuss in detail methods to design-for-ilities. © 2013 The Author(s). Published by Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibration and acoustic analysis at higher frequencies faces two challenges: computing the response without using an excessive number of degrees of freedom, and quantifying its uncertainty due to small spatial variations in geometry, material properties and boundary conditions. Efficient models make use of the observation that when the response of a decoupled vibro-acoustic subsystem is sufficiently sensitive to uncertainty in such spatial variations, the local statistics of its natural frequencies and mode shapes saturate to universal probability distributions. This holds irrespective of the causes that underly these spatial variations and thus leads to a nonparametric description of uncertainty. This work deals with the identification of uncertain parameters in such models by using experimental data. One of the difficulties is that both experimental errors and modeling errors, due to the nonparametric uncertainty that is inherent to the model type, are present. This is tackled by employing a Bayesian inference strategy. The prior probability distribution of the uncertain parameters is constructed using the maximum entropy principle. The likelihood function that is subsequently computed takes the experimental information, the experimental errors and the modeling errors into account. The posterior probability distribution, which is computed with the Markov Chain Monte Carlo method, provides a full uncertainty quantification of the identified parameters, and indicates how well their uncertainty is reduced, with respect to the prior information, by the experimental data. © 2013 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design, 3D FEM modelling and measurement results of a novel high temperature, low power SOI CMOS MEMS thermal conductivity gas sensor are presented here. The sensor consists of a circular membrane with an embedded tungsten micro-heater. The high sensing capability is based on the temperature sensitivity of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm 2. The circular membrane has a 600 μm diameter while the heating element has a 320 μm diameter. Measurement results show that for a constant power consumption of 75 mW the heater temperature was 562.4°C in air, 565.9°C in N2, 592.5°C for 1 % H2 in Ar and 599.5°C in Ar. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present for the first time, a novel silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) MEMS thermal wall shear stress sensor based on a tungsten hot-film and three thermopiles. These devices have been fabricated using a commercial 1 μm SOI-CMOS process followed by a deep reactive ion etch (DRIE) back-etch step to create silicon oxide membranes under the hot-film for effective thermal isolation. The sensors show an excellent repeatability of electro-thermal characteristics and can be used to measure wall shear stress in both constant current anemometric as well as calorimetric modes. The sensors have been calibrated for wall shear stress measurement of air in the range of 0-0.48 Pa using a suction type, 2-D flow wind tunnel. The calibration results show that the sensors have a higher sensitivity (up to four times) in calorimetric mode compared to anemometric mode for wall shear stress lower than 0.3 Pa. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a high-resolution frequency-output MEMS tilt sensor based on resonant sensing principles. The tilt sensor measures orientation by sensing the component of gravitational acceleration along a specified input axis. A combination of design enhancements enables significantly higher sensitivity for this device as compared to previously reported prototype sensors. The MEMS tilt sensor is calibrated on a manual tilt table over tilt angles ranging over 0-90 degrees with a relatively linear response measured in the range of ±20°(linearity error <2.3%) with a scale factor of approximately 50.06 Hz/degree. The noise-limited resolution of the sensor is found to be approximately 250 nano-radians for an integration time of 0.8 s, which is over an order of magnitude better than previously reported results [1]. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical waveguide sensor formed directly on low-cost PCB substrates is presented for the first time. The device integrates polymer waveguides functionalized with chemical dyes, photonic and electronic components and allows multiple-gas detection. © OSA/CLEO 2011.