967 resultados para selective attention
Resumo:
Ta2O5-SiO2 catalysts were prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) and tantalum (V) ethoxide as the sources of silicon and tantalum, and two families of quaternary ammonium salts, [CnH(2n+1)(CH3)(3)N]Br (n = 14, 16, 18) and [(CnH(2n+1))(4)N]Br (n = 10, 12, 16, 18) as surfactants. The catalysts were compared for the selective suffoxidation of 4,6-dimethyl-2-thiomethylpyrimidine using peroxide as an oxidising agent in a range of ionic liquids and organic solvents. The sol-gel catalysts were also compared with tantalum on MCM-41 prepared by grafting. The catalysts were characterized from adsorption-desorption isotherms of N-2, XRD patterns, small-angle X-ray scattering, IR spectra from adsorbed pyridine and CDCl3, XPS spectra, and Si-29 magic angle spinning (MAS) NNIR experiments. The effect of recycling on the catalyst leaching and selectivity/activity was also studied. High activities and selectivities were found in [NTf2](-) based ionic liquids and organic solvents with good recyclability of the catalyst. Tantalum was found in the solution after reaction; however, this was determined to be due to entrapment of catalyst particulates, as opposed to leaching of the active metal. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The problem of differentiating between active and spectator species that have similar infrared spectra has been addressed by developing short time-on-stream in situ spectroscopic transient isotope experimental techniques (STOS-SSITKA). The techniques have been used to investigate the reaction mechanism for the reduction of nitrogen oxides (NOx) by hydrocarbons under lean-burn (excess oxygen) conditions on a silver catalyst. Although a nitrate-type species tracks the formation of isotopically labeled dinitrogen, the results show that this is misleading because a nitrate-type species has the same response to an isotopic switch even under conditions where no dinitrogen is produced. In the case of cyanide and isocyanate species, the results show that it is possible to differentiate between slowly reacting spectator isocyanate species, probably adsorbed on the oxide support, and reactive isocyanate species, possibly on or close to the active silver phase. The reactive isocyanate species responds to an isotope switch at a rate that matches that of the rate of formation of the main product, dinitrogen. It is concluded that these reactive isocyanates could potentially be involved in the reduction of NOx whereas there is no evidence to support the involvement of nitrate-type species that are observable by infrared spectroscopy.
Resumo:
Ag/gamma-Al2O3 catalysts have been characterized in-depth during different thermo-chemical treatments by in situ diffuse reflectance UV-visible spectroscopy and quasi in situ Transmission Electron Microscopy. The combination of these techniques indicates that sintering and redispersion of silver is clearly observed from the increases and decreases in the absorption band intensity over the range of 250-600 nm due to the presence of silver clusters and silver nanoparticles. These results allow us to study the effect of the reaction feed on the metal dispersion at different operation conditions and discuss the formation of active sites during the selective catalytic reduction of O-2 with excess H-2 in the presence of unsaturated hydrocarbons. In this case high catalytic activity and selectivity toward the oxygen removal was achieved for this catalyst. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A mechanistic study of the H-2-assisted Selective Catalytic Reduction (SCR) of NOx with octane as reductant over a Ag/Al2O3 catalyst was carried out using a modified DRIFTS cell coupled to a mass spectrometer Using fast transient cycling switching of H-2 with a time resolution of a few seconds It was possible to differentiate potential reaction intermediates from other moieties that are clearly spectator species Using such a periodic operation mode effects were uncovered that are normally hidden in conventional transient studies which typically consist of a single transient In experiments based on a single transient addition of H-2 to or removal of H-2 from the SCR feed it was found that the changes in the concentrations of gaseous species (products and reactants) were not matched by changes at comparable timescales of the concentration of surface species observed by IR This observation indicates that the majority of sur face species observed by DRIFTS under steady-state reaction conditions are spectators In contrast under fast cycling experimental conditions It was found that a surface isocyanate species had a temporal response that matched that of N-15(2) This suggests that some of the isocyanate species observed by infrared spectroscopy could be important intermediates in the hydrogen-assisted SCR reaction although it is emphasised that this may be dependent on the way in which the infrared spectra are obtained It is concluded that the use of fast transient cycling switching techniques may provide useful mechanistic information under certain circumstances.
Resumo:
Pt-ceria catalysts present different surface chemistries depending on the preparation method and the pretreatment. The catalytic behavior of Pt/CeO2 catalysts in the hydrodechlorination of trichloroethylene (TCE) to ethylene was examined as a function of the pretreatment conditions and the noble metal precursor salts. Using FTIR and X-ray photoelectron spectroscopy, significant differences were observed in the surface properties of Pt/CeO2 prepared from the H2PtCl6 precursor after different pretreatment procedures (i.e.. reduction or oxidation-reduction). These surface changes are related to chloride residues from the synthesis. Strong changes were observed in the selectivity of the catalysts to ethylene depending on the pretreatment conditions. The 0.5%Pt/CeO2 catalyst showed a 13% selectivity toward ethylene after reduction, whereas alter oxidation, followed by reduction, the selectivity increased up to 85% at the same conversion level. This effect was only observed when a chloride-containing precursor was used in the preparation. In this way, it is demonstrated that the use of a Cl-containing Pt precursor and an air treatment prior to reduction strongly improves the ethylene selectivity of Pt-CeO2 dechlorination catalysts. This can be explained by formation or a CeOCl phase during the synthesis that decomposes upon air tempering, producing oxygen vacancies on the ceria support. We propose that these oxygen vacancies are active for cleaving off Cl from the TCE. Pt then supplies II to clean-off Cl as HCl. Reaction of TCE on Pt produces rather ethane, so Pt may be partly Cl-poisoned for the hydrodechlorination reaction but not for II, dissociation or CO adsorption.
Resumo:
Vertically aligned ZnO nanowires (NWs) with a length of 1.5-10 mu m and a mean diameter of ca. 150 nm were grown by chemical vapour deposition onto a c-oriented ZnO seed layer which was deposited by atomic layer deposition on Si substrates. The substrates were then spin-coated with an ethanol solution containing Pd nanoparticles with an average size of 2.7 and 4.5 nm. A homogeneous distribution of the Pd nanoparticles on ZnO NWs has been obtained using both Pd particle series. The catalytic activity of the ZnO NWs and Pd/ZnO NWs catalysts was measured in the semihydrogenation of 2-methyl-3-butyn-2-ol at 303-343 K and a pressure of 2-10 bar. The effect of the solvent used on the catalytic performance of the Pd/ZnO NWs catalyst was studied. The Pd/ZnO catalysts showed alkene selectivity of up to 95% at an alkyne conversion of 99%. A kinetic model is proposed to explain the activity and selectivity of the ZnO support and Pd/ZnO catalysts.
Resumo:
Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3600658]
Resumo:
The disilylated compound 1,4-bis(trimethylsilyl)-2,3,5,6-tetrakis((dimethylamino)methyl)benzene, (Me(3)Si)(2)C2N4, 4, can be electrophilically palladated selectively at the C-Si bonds to afford the neutral 1,4-bis(palladium) complex [(AcOPd)(2)(C2N4)], from which the dicationic [(LPd)(2)(C2N4)](2+) (L = MeCN) organometallic species are accessible. The monosilylated species (Me(3)Si)(H)C2N4, 5, can be used for the preparation of the dicationic heterodinuclear platinum(II)-palladium(II) species [(LPd)(LPt)(C2N4)](2+) (L = MeCN) via a sequence of transmetalation of the organolithium derivative of 5 with [PtCl2(SEt(2))(2)], followed by a C-Si bond palladation reaction.