940 resultados para security requirement engineering
Resumo:
Smartphones are getting increasingly popular and several malwares appeared targeting these devices. General countermeasures to smartphone malwares are currently limited to signature-based antivirus scanners which efficiently detect known malwares, but they have serious shortcomings with new and unknown malwares creating a window of opportunity for attackers. As smartphones become host for sensitive data and applications, extended malware detection mechanisms are necessary complying with the corresponding resource constraints. The contribution of this paper is twofold. First, we perform static analysis on the executables to extract their function calls in Android environment using the command readelf. Function call lists are compared with malware executables for classifying them with PART, Prism and Nearest Neighbor Algorithms. Second, we present a collaborative malware detection approach to extend these results. Corresponding simulation results are presented.
Resumo:
Smartphones become very critical part of our lives as they offer advanced capabilities with PC-like functionalities. They are getting widely deployed while not only being used for classical voice-centric communication. New smartphone malwares keep emerging where most of them still target Symbian OS. In the case of Symbian OS, application signing seemed to be an appropriate measure for slowing down malware appearance. Unfortunately, latest examples showed that signing can be bypassed resulting in new malware outbreak. In this paper, we present a novel approach to static malware detection in resource-limited mobile environments. This approach can be used to extend currently used third-party application signing mechanisms for increasing malware detection capabilities. In our work, we extract function calls from binaries in order to apply our clustering mechanism, called centroid. This method is capable of detecting unknown malwares. Our results are promising where the employed mechanism might find application at distribution channels, like online application stores. Additionally, it seems suitable for directly being used on smartphones for (pre-)checking installed applications.
Resumo:
Smartphones started being targets for malware in June 2004 while malware count increased steadily until the introduction of a mandatory application signing mechanism for Symbian OS in 2006. From this point on, only few news could be read on this topic. Even despite of new emerging smartphone platforms, e.g. android and iPhone, malware writers seemed to lose interest in writing malware for smartphones giving users an unappropriate feeling of safety. In this paper, we revisit smartphone malware evolution for completing the appearance list until end of 2008. For contributing to smartphone malware research, we continue this list by adding descriptions on possible techniques for creating the first malware(s) for Android platform. Our approach involves usage of undocumented Android functions enabling us to execute native Linux application even on retail Android devices. This can be exploited to create malicious Linux applications and daemons using various methods to attack a device. In this manner, we also show that it is possible to bypass the Android permission system by using native Linux applications.
Resumo:
Smartphones are steadily gaining popularity, creating new application areas as their capabilities increase in terms of computational power, sensors and communication. Emerging new features of mobile devices give opportunity to new threats. Android is one of the newer operating systems targeting smartphones. While being based on a Linux kernel, Android has unique properties and specific limitations due to its mobile nature. This makes it harder to detect and react upon malware attacks if using conventional techniques. In this paper, we propose an Android Application Sandbox (AASandbox) which is able to perform both static and dynamic analysis on Android programs to automatically detect suspicious applications. Static analysis scans the software for malicious patterns without installing it. Dynamic analysis executes the application in a fully isolated environment, i.e. sandbox, which intervenes and logs low-level interactions with the system for further analysis. Both the sandbox and the detection algorithms can be deployed in the cloud, providing a fast and distributed detection of suspicious software in a mobile software store akin to Google's Android Market. Additionally, AASandbox might be used to improve the efficiency of classical anti-virus applications available for the Android operating system.
Resumo:
Complex Internet attacks may come from multiple sources, and target multiple networks and technologies. Nevertheless, Collaborative Intrusion Detection Systems (CIDS) emerges as a promising solution by using information from multiple sources to gain a better understanding of objective and impact of complex Internet attacks. CIDS also help to cope with classical problems of Intrusion Detection Systems (IDS) such as zero-day attacks, high false alarm rates and architectural challenges, e. g., centralized designs exposing the Single-Point-of-Failure. Improved complexity on the other hand gives raise to new exploitation opportunities for adversaries. The contribution of this paper is twofold. We first investigate related research on CIDS to identify the common building blocks and to understand vulnerabilities of the Collaborative Intrusion Detection Framework (CIDF). Second, we focus on the problem of anonymity preservation in a decentralized intrusion detection related message exchange scheme. We use techniques from design theory to provide multi-path peer-to-peer communication scheme where the adversary can not perform better than guessing randomly the originator of an alert message.
Resumo:
Increasing use of computerized systems in our daily lives creates new adversarial opportunities for which complex mechanisms are exploited to mend the rapid development of new attacks. Behavioral Biometrics appear as one of the promising response to these attacks. But it is a relatively new research area, specific frameworks for evaluation and development of behavioral biometrics solutions could not be found yet. In this paper we present a conception of a generic framework and runtime environment which will enable researchers to develop, evaluate and compare their behavioral biometrics solutions with repeatable experiments under the same conditions with the same data.
Resumo:
The umbrella of Australian research higher degree (RHD) offerings has broadened from the traditional MPhil/PhD programmes to include a range of professional masters and doctoral degrees. This article reports on the experiences of three PhD students, engaged in an informally managed industry partnered research programme, described in this article as the work integrated research higher degree (WIRHD). Their learning process shares the attributes from both the traditional PhD programme and professional doctorates. However, because of the blended nature of the learning contexts, candidates engaged in the WIRHD programme must address a wider range of issues than those following the traditional RHD pathway. An exploratory case study approach was adopted with the view to develop an integrative framework to explain the various contexts that influence the learning experience of WIRHD candidates, as well as a structured approach to guide this contemporary form of industry partnered WIRHD process.
Resumo:
A number of security models have been proposed for RFID systems. Recent studies show that current models tend to be limited in the number of properties they capture. Consequently, models are commonly unable to distinguish between protocols with regard to finer privacy properties. This paper proposes a privacy model that introduces previously unavailable expressions of privacy. Based on the well-studied notion of indistinguishability, the model also strives to be simpler, easier to use, and more intuitive compared to previous models.
Resumo:
Internet chatrooms are common means of interaction and communications, and they carry valuable information about formal or ad-hoc formation of groups with diverse objectives. This work presents a fully automated surveillance system for data collection and analysis in Internet chatrooms. The system has two components: First, it has an eavesdropping tool which collects statistics on individual (chatter) and chatroom behavior. This data can be used to profile a chatroom and its chatters. Second, it has a computational discovery algorithm based on Singular Value Decomposition (SVD) to locate hidden communities and communication patterns within a chatroom. The eavesdropping tool is used for fine tuning the SVD-based discovery algorithm which can be deployed in real-time and requires no semantic information processing. The evaluation of the system on real data shows that (i) statistical properties of different chatrooms vary significantly, thus profiling is possible, (ii) SVD-based algorithm has up to 70-80% accuracy to discover groups of chatters.
Resumo:
Securing IT infrastructures of our modern lives is a challenging task because of their increasing complexity, scale and agile nature. Monolithic approaches such as using stand-alone firewalls and IDS devices for protecting the perimeter cannot cope with complex malwares and multistep attacks. Collaborative security emerges as a promising approach. But, research results in collaborative security are not mature, yet, and they require continuous evaluation and testing. In this work, we present CIDE, a Collaborative Intrusion Detection Extension for the network security simulation platform ( NeSSi 2 ). Built-in functionalities include dynamic group formation based on node preferences, group-internal communication, group management and an approach for handling the infection process for malware-based attacks. The CIDE simulation environment provides functionalities for easy implementation of collaborating nodes in large-scale setups. We evaluate the group communication mechanism on the one hand and provide a case study and evaluate our collaborative security evaluation platform in a signature exchange scenario on the other.
Resumo:
Computer worms represent a serious threat for modern communication infrastructures. These epidemics can cause great damage such as financial losses or interruption of critical services which support lives of citizens. These worms can spread with a speed which prevents instant human intervention. Therefore automatic detection and mitigation techniques need to be developed. However, if these techniques are not designed and intensively tested in realistic environments, they may cause even more harm as they heavily interfere with high volume communication flows. We present a simulation model which allows studies of worm spread and counter measures in large scale multi-AS topologies with millions of IP addresses.
Resumo:
Modern mobile computing devices are versatile, but bring the burden of constant settings adjustment according to the current conditions of the environment. While until today, this task has to be accomplished by the human user, the variety of sensors usually deployed in such a handset provides enough data for autonomous self-configuration by a learning, adaptive system. However, this data is not fully available at certain points in time, or can contain false values. Handling potentially incomplete sensor data to detect context changes without a semantic layer represents a scientific challenge which we address with our approach. A novel machine learning technique is presented - the Missing-Values-SOM - which solves this problem by predicting setting adjustments based on context information. Our method is centered around a self-organizing map, extending it to provide a means of handling missing values. We demonstrate the performance of our approach on mobile context snapshots, as well as on classical machine learning datasets.
Resumo:
Driven by the rapid development of ubiquitous and pervasive computing, personalized services and applications are deployed to support our lives. Accordingly, the number of interfaces and devices (smartphone, tablet computer, etc.) provided to access and consume these services is growing continuously. To simplify the complexity of managing many accounts with different credentials, Single Sign-On (SSO) solutions have been introduced. However, a single password for many accounts represents a single-point-of-failure. Furthermore, once initiated SSO session is a high potential risk when the working station is left unlocked and unattended. In this paper, we present a conception of a Persistent Single Sign-On (PSSO) for ubiquitous home environments by involving the capabilities of Behavioral Biometrics to check the identity of the user continuously in an unobtrusive manner.
Resumo:
An energy storage system (ESS) can provide ancillary services such as frequency regulation and reserves, as well as smooth the fluctuations of wind power outputs, and hence improve the security and economics of the power system concerned. The combined operation of a wind farm and an ESS has become a widely accepted operating mode. Hence, it appears necessary to consider this operating mode in transmission system expansion planning, and this is an issue to be systematically addressed in this work. Firstly, the relationship between the cost of the NaS based ESS and its discharging cycle life is analyzed. A strategy for the combined operation of a wind farm and an ESS is next presented, so as to have a good compromise between the operating cost of the ESS and the smoothing effect of the fluctuation of wind power outputs. Then, a transmission system expansion planning model is developed with the sum of the transmission investment costs, the investment and operating costs of ESSs and the punishment cost of lost wind energy as the objective function to be minimized. An improved particle swarm optimization algorithm is employed to solve the developed planning model. Finally, the essential features of the developed model and adopted algorithm are demonstrated by 18-bus and 46-bus test systems.
Resumo:
A number of security models have been proposed for RFID systems. Recent studies show that current models tend to be limited in the number of properties they capture. Consequently, models are commonly unable to distinguish between protocols with regard to finer privacy properties. This paper proposes a privacy model that introduces previously unavailable expressions of privacy. Based on the well-studied notion of indistinguishability, the model also strives to be simpler, easier to use, and more intuitive compared to previous models.