980 resultados para salt reduction
Resumo:
Semisupervised dimensionality reduction has been attracting much attention as it not only utilizes both labeled and unlabeled data simultaneously, but also works well in the situation of out-of-sample. This paper proposes an effective approach of semisupervised dimensionality reduction through label propagation and label regression. Different from previous efforts, the new approach propagates the label information from labeled to unlabeled data with a well-designed mechanism of random walks, in which outliers are effectively detected and the obtained virtual labels of unlabeled data can be well encoded in a weighted regression model. These virtual labels are thereafter regressed with a linear model to calculate the projection matrix for dimensionality reduction. By this means, when the manifold or the clustering assumption of data is satisfied, the labels of labeled data can be correctly propagated to the unlabeled data; and thus, the proposed approach utilizes the labeled and the unlabeled data more effectively than previous work. Experimental results are carried out upon several databases, and the advantage of the new approach is well demonstrated.
Resumo:
The Gaussian process latent variable model (GP-LVM) has been identified to be an effective probabilistic approach for dimensionality reduction because it can obtain a low-dimensional manifold of a data set in an unsupervised fashion. Consequently, the GP-LVM is insufficient for supervised learning tasks (e. g., classification and regression) because it ignores the class label information for dimensionality reduction. In this paper, a supervised GP-LVM is developed for supervised learning tasks, and the maximum a posteriori algorithm is introduced to estimate positions of all samples in the latent variable space. We present experimental evidences suggesting that the supervised GP-LVM is able to use the class label information effectively, and thus, it outperforms the GP-LVM and the discriminative extension of the GP-LVM consistently. The comparison with some supervised classification methods, such as Gaussian process classification and support vector machines, is also given to illustrate the advantage of the proposed method.
Resumo:
Combined with polymer wrapping and layer-by-layer techniques, a noncovalent functionalization method is developed to disperse Pt nanocubes (NCs) onto carbon nanotubes (CNTs). By adjusting the relative ratio of Pt NCs to CNTs, nanotubes with different Pt NC loadings are produced. The composites exhibit excellent electrocatalytic activity towards oxygen reduction.
Resumo:
A carbon-supported palladium catalyst modified by non-metal phosphorus(PdP/C) has been developed as an oxygen reduction catalyst for direct methanol fuel cells.The PdP/C catalyst was prepared by the sodium hypophosphite reduction method. The as-prepared Pd nanoparticles have a narrow size distribution with an average diameter of 2 nm. Energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results indicate that P enters into the crystal lattice of Pd and forms an alloy.
Resumo:
Multiwalled carbon nanotube (MWCNT)/ionic liquid/gold nanoparticle hybrid materials have been prepared by a chemical route that involves functionalization of MWCNT with amine-terminated ionic liquids followed by deposition of Au. Transmission electron microscopy revealed well-distributed Au with a narrow size distribution centered around 3.3 nm. The identity of the hybrid material was confirmed through Raman and X-ray photoelectron spectroscopy.
Resumo:
Stable gold nanoparticles with average size 1.7 nm synthesized by an amine-terminated ionic liquid showed enhanced electrocatalytic activity and high stability.
Resumo:
Pd nanoparticles supported on WO3/C hybrid material have been developed as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells. The resultant Pd-WO3/C catalyst has an ORR activity comparable to the commercial Pt/C catalyst and a higher activity than the Pd/C catalyst prepared with the same method. Based on the physical and electrochemical characterizations, the improvement in the catalytic performance may be attributed to the small particle sizes and uniform dispersion of Pd on the WO3/C, the strong interaction between Pd and WO3 and the formation of hydrogen tungsten bronze which effectively promote the direct 4-electron pathway of the ORR at Pd.
Resumo:
Chloro( 5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide ( Et4NBr) in combination with bulky Lewis acid was used for the copolymerization of CO2 and cyclohexene oxide ( CHO). Bulky Lewis acid having substituents at the ortho positions of the phenolate ligands, like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate), significantly shortened the induction period and raised the catalytic activity, the corresponding turnover frequency reached 44.9 h(-1) in 9 h, which was 23.8% higher than that from ( TPP)AlCl/Et4NBr binary catalyst. The resulting polycarbonate has carbonate linkage over 93% with number average molecular weight of ( 4.5-6.5) x 10(3) and polydispersity index below 1.10.
Resumo:
In this study, binodal curves and tie line data of [Amim]Cl + salt (K3PO4, K2HPO4, K2CO3) + water aqueous biphasic systems (ABS) were measured and correlated satisfactorily with the Merchuk equation and Othmer-Tobias and Bancroft equations, respectively. [Amim]Cl could be recovered from aqueous solutions using the ABS, and the recovery efficiency could reach 96.80%. The recovery efficiency was influenced by the concentrations of the salts and their Homeister series: K3PO4 > K2HPO4 > K2CO3. Our method provides a new and effective route for the recovery of hydrophilic IL using [Amim]Cl + salt + water ABS from aqueous solutions.
Resumo:
The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 mu m is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A center dot cm(-2). The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.
Resumo:
Carbon modified by the reduction of aromatic diazonium derivatives was first used as electrode for the electrochemical stripping analysis of heavy metals. As a model, the glassy carbon electrode was modified with benzoic acid by electrochemical reduction of diazobenzoic acid, and the resulting modified electrodes were used for determination of Cd2+ and Pb2+. The anodic peak currents of cadmium and lead at the benzoic acid-modified glassy carbon electrode are 7.2 and 6 times of that at the bare glassy carbon electrode. A linear response was observed for Pb2+ and Cd2+ in the range of 0.5-50 mu g/l.
Resumo:
Mass spectrometry is not able to differentiate NOx and N2 from other interferences (e.g. CO and C2H4) in the deNOx reactions. In the present study, a quantitative method for analysis of NOx and N2 simultaneously in these reactions with an assisted converter operated at higher temperature under O2-rich condition, which eliminates the interferences, is developed. The NOx conversion from this method is comparable to the one from an Automotive Emission Analyser equipped with NOx electrochemical sensor. Two types of deNOx reactions are tested in terms of selectivity of N2 production. The application of this method is discussed.
Resumo:
Plasma-sprayed 8YSZ (zirconia stabilized with 8 wt% yttria)/NiCoCrAlYTa thermal barrier coatings (TBCs) were laser-glazed using a continuous-wave CO2 laser. Open pores within the coating surface were eliminated and an external densified layer was generated by laser-glazing. The hot corrosion resistances of the plasma-sprayed and laser-glazed coatings were investigated. The two specimens were exposed for the same period of 100 h at 900 degrees C to a salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4). Serious crack and spallation occurred in the as-sprayed coating, while the as-glazed coating exhibited good hot corrosion behavior and consequently achieved a prolonged lifetime. The results showed that the as-sprayed 8YSZ coating achieved remarkably improved hot corrosion resistance by laser-glazing.
Resumo:
Carbon black and titanium dioxide supported iron tetraphenylporphyrin (FeTPP/TiO2/C) catalysts for oxygen reduction reaction (ORR) were prepared by sol-gel and precipitation methods followed by a heat-treatment at temperatures of 400-1000 degrees C. The FeTPP/C and TiO2/C were also studied for comparison. The FeTPP/TiO2/C pyrolyzed at 700 degrees C exhibits significantly improved stability while maintaining high activity towards ORR in comparison with the FeTPP/C counterpart. The electrochemical study combined with XRD, XPS, and SEM/EDX analyses revealed that the appropriate dispersion of TiO2 on the surface of FeTPP/TiO2/C catalysts, which depending on heat-treatment temperature, plays a crucial role in determining the activity and stability of catalysts.
Resumo:
A prominent methanol-tolerant characteristic of the PtCeOx/C electrocatalyst was found during oxygen reduction reaction process. The carbon-supported platinum modified with cerium oxide (PtCeOx/C) as cathode electrocatalyst for direct methanol fuel cells was prepared via a simple and effective route. The synthesized electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. It was found that the cerium oxide within PtCeOx/C present in an amorphous form on the carbon support surface and the PtCeOx/C possesses almost similar disordered morphological structure and slightly smaller particle size compared with the unmodified Pt/C catalyst.