891 resultados para rubber to rubber bonding


Relevância:

30.00% 30.00%

Publicador:

Resumo:

DFT and TD-DFT calculations (ADF program) were performed in order to analyze the electronic structure of the [M-3(CO)(12)] clusters (M = Ru, Os) and interpret their electronic spectra. The highest occupied molecular orbitals are M-M bonding (sigma) involving different M-M bonds, both for Ru and Os. They participate in low-energy excitation processes and their depopulation should weaken M-M bonds in general. While the LUMO is M-NI and M-CO anti-bonding (sigma*), the next, higher-lying empty orbitals have a main contribution from CO (pi*) and either a small (Ru) or an almost negligible one (Os) from the metal atoms. The main difference between the two clusters comes from the different nature of these low-energy unoccupied orbitals that have a larger metal contribution in the case of ruthenium. The photochemical reactivity of the two clusters is reexamined and compared to earlier interpretations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-soluble polymers are often capable of forming interpolymer complexes in solutions and at interfaces, which offers an excellent opportunity for surface modification. The complex formation may be driven by H-bonding between poly(carboxylic acids) and non-ionic polymers or by electrostatic attraction between oppositely-charged polyelectrolytes. In the present communication the following applications of interpolymer complexation in coating technologies will be considered: (1) Complexation between poly(acrylic acid) and non-ionic polymers via H-bonding was used to coat glass surfaces. It was realised using layer-by-layer deposition of IPC on glass surfaces with subsequent cross-linking of dry multilayers by thermal treatment. Depending on the glass surface functionality this complexation resulted in detachable and non-detachable hydrogel films; (2) Electrostatic layer-by-layer self-assembly between glycol chitosan and bovine serum albumin (BSA) was used to coat magnetic nanoparticles. It was demonstrated that the native structure of BSA remains unaffected by the self-assembling process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to develop skin artefact for an octopus-inspired robot arm, which is designed to be able to elongate 60% of its original length, silicone rubber and knitted nylon sheet were selected to manufacture an artificial skin, due to their higher elastic strain and high flexibility. Tensile and scissors cutting tests were conducted to characterise the matrix and reinforcing materials and the skin artefact. Material properties of the individual and the composite materials were compared with the measured properties of real octopus skin presented in Part I. The Young’s modulus of the skin should be below 20 MPa and the elastic strain range should be over 60%. The fracture toughness should be at least 0.9 kJ·m−2. Tubes made of the skin artefact filled with liquid were tested to study volume change under deformation. Finite element analysis model was developed to simulate the material and arm structure under tensile loading. Results show that the skin artefact developed has similar mechanical properties as the real octopus skin and satisfies all the design specifications of the OCTOPUS robot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soft skin artefacts made of knitted nylon reinforced silicon rubber were fabricated mimicking octopus skin. A combination of ecoflex 0030 and 0010 were used as matrix of the composite to obtain the right stiffness for the skin artefacts. Material properties were characterised using static uniaxial tension and scissors cutting tests. Two types of tactile sensors were developed to detect normal contact; one used quantum tunnelling composite materials and the second was fabricated from silicone rubber and a conductive textile. Sensitivities of the sensors were tested by applying different modes of loading and the soft sensors were incorporated into the skin prototype. Passive suckers were developed and tested against squid suckers. An integrated skin prototype with embedded deformable sensors and attached suckers developed for the arm of an octopus inspired robot is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyvinylpyrrolidone is a widely used in tablet formulations with the linear form acting as a wetting agent and disintegrant whereas the cross-linked form is a super-disintegrant. We have previously reported that simply mixing the commercial cross-linked polymer with ibuprofen disrupted drug crystallinity with consequent improvements in drug dissolution behavior. In this study, we have designed and synthesized novel cross-linking agents containing a range of oligoether moieties which have then be polymerized with vinylpyrrolidone to generate a suite of novel excipients with enhanced hydrogen-bonding capabilities. The polymers have a porous surface and swell in most common solvents and in water; properties which suggest their value as disintegrants. The polymers were evaluated in simple physical mixtures with ibuprofen as a model poorly-water soluble drug. The results show that the novel PVPs induce the drug to become “X-ray amorphous”, which increased dissolution to a greater extent than that seen with commercial cross-linked PVP. The polymers stabilize the amorphous drug with no evidence for recrystallization seen after 20 weeks storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomechanical properties of squid suckers were studied to provide inspiration for the development of sucker artefacts for a robotic octopus. Mechanical support of the rings found inside squid suckers was studied by bending tests. Tensile tests were carried out to study the maximum possible sucking force produced by squid suckers based on the strength of sucker stalks, normalized by the sucking areas. The squid suckers were also directly tested to obtain sucking forces by a special testing arrangement. Inspired by the squid suckers, three types of sucker artefacts were developed for the arm skin of an octopus inspired robot. The first sucker artefact made of knitted nylon sheet reinforced silicone rubber has the same shape as the squid suckers. Like real squid suckers, this type of artefact also has a stalk that is connected to the arm skin and a ring to give radial support.The second design is a straight cylindrical structure with uniform wall thickness made of silicone rubber. One end of the cylinder is directly connected to the arm skin and the other end is open. The final design of the sucker has a cylindrical base and a concave meniscus top. The meniscus was formed naturally using the surface tension of silicone gel, which leads to a higher level of the liquid around the edge of a container. The wall thickness decreases towards the tip of the sucker opening. Sucking forces of all three types of sucker artefacts were measured. Advantages and isadvantages of each sucker type were discussed. The final design of suckers has been implemented to the arm skin prototypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binary mixed-metal variants of the one-dimensional MCN compounds (M = Cu, Ag, and Au) have been prepared and characterized using powder X-ray diffraction, vibrational spectroscopy, and total neutron diffraction. A solid solution with the AgCN structure exists in the (CuxAg1–x)CN system over the range (0 ≤ x ≤ 1). Line phases with compositions (Cu1/2Au1/2)CN, (Cu7/12Au5/12)CN, (Cu2/3Au1/3)CN, and (Ag1/2Au1/2)CN, all of which have the AuCN structure, are found in the gold-containing systems. Infrared and Raman spectroscopies show that complete ordering of the type [M–C≡N–M′–N≡C−]n occurs only in (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN. The sense of the cyanide bonding was determined by total neutron diffraction to be [Ag–NC–Au–CN−]n in (Ag1/2Au1/2)CN and [Cu–NC–Au–CN−]n in (Cu1/2Au1/2)CN. In contrast, in (Cu0.50Ag0.50)CN, metal ordering is incomplete, and strict alternation of metals does not occur. However, there is a distinct preference (85%) for the N end of the cyanide ligand to be bonded to copper and for Ag–CN–Cu links to predominate. Contrary to expectation, aurophilic bonding does not appear to be the controlling factor which leads to (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN adopting the AuCN structure. The diffuse reflectance, photoluminescence, and 1-D negative thermal expansion (NTE) behaviors of all three systems are reported and compared with those of the parent cyanide compounds. The photophysical properties are strongly influenced both by the composition of the individual chains and by how such chains pack together. The NTE behavior is also controlled by structure type: the gold-containing mixed-metal cyanides with the AuCN structure show the smallest contraction along the chain length on heating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trans-[Cu2L2Cl2] (1), and cis-[Cu2L2Cl2]·H2O (2) isomers of a diphenoxido bridged Cu2O2 core have been synthesized using a tridentate reduced Schiff base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol. The geometry around Cu(II) is intermediate between square pyramid and trigonal bipyramid (Addison parameter, tau = 0.463) in 1 but nearly square pyramidal (tau = 0.049) in 2. The chloride ions are coordinated to Cu(II) and are trans oriented in 1 but cis oriented in 2. Both isomers have been optimized using density functional theory (DFT) calculations and it is found that the trans isomer is 7.2 kcal mol(-1) more favorable than the cis isomer. However, the hydrogen bonding interaction of crystallized water molecule with chloride ions compensates for the energy difference and stabilizes the cis isomer. Both complexes have been converted to a very rare phenoxido-azido bridged trinuclear species, [Cu3L2(mu(1,1)-N-3)(2)(H2O)(2)(ClO4)(2)] (3) which has also been characterized structurally. All the complexes are antiferromagnetically coupled but the magnitude of the coupling constants are significantly different (J = -156.60, -652.31, and -31.54 cm(-1) for 1, 2, and 3 respectively). Density functional theory (DFT) calculations have also been performed to gain further insight into the qualitative theoretical interpretation on the overall magnetic behavior of the complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new phenylmercury(II) and one mercury(II) dithiocarbamate complexes viz. PhHg S2CN(PyCH2) Bz (1), PhHg S2CN(PyCH2)CH3 (2), PhHg S2CN(Bz)CH3 (3), and [Hg (NCS2(PyCH2)Bz)(2)] (4) (Py = pyridine; Bz = benzyl) have been synthesized and characterized by elemental analyses, IR, electronic absorption, H-1 and C-13 NMR spectroscopy. The crystal structures of 1, 2 and 3 showed a linear S-Hg-C core at the centre of the molecule, in which the metal atom is bound to the sulfur atom of the dithiocarbamate ligand and a carbon atom of the aromatic ring. In contrast the crystal structure of 4 showed a linear S-Hg-S core at the Hg(II) centre of the molecule. Weak intermolecular Hg center dot center dot center dot N (Py) interactions link molecules into a linear chain in the case of 1, whereas chains of dimers are formed in 2 through intermolecular Hg center dot center dot center dot N (Py) and Hg center dot center dot center dot S interactions. 3 forms a conventional face-to-edge dimeric structure through intermolecular Hg center dot center dot center dot S secondary bonding and 4 forms a linear chain of dimers through face-to-face Hg center dot center dot center dot S secondary bonding. In order to elucidate the nature of these secondary bonding interactions and the electronic absorption spectra of the complexes, ab initio quantum chemical calculations at the MP2 level and density functional theory calculations were carried out for 1-3. Complexes 1 and 2 exhibited photoluminescent properties in the solid state as well as in the solution phase. Studies indicate that Hg center dot center dot center dot S interactions decrease and Hg center dot center dot center dot N interactions increase the chances of photoluminescence in the solid phase

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of 2-hydroxybenzamide(C7H7NO2) and 2-methoxybenzamide (C8H9NO2) have been determined in the gas-phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d,p)) predict four stable conformers for both 2-hydroxybenzamide and 2-methoxybenzamide. For both compounds, evidence for intramolecular hydrogen bonding is presented. In 2-hydroxybenzamide, the observed hydrogen bonded fragment is between the hydroxyl and carbonyl groups, while in 2-methoxybenzamide, the hydrogen bonded fragment is between one of the hydrogen atoms of the amide group and the methoxy oxygen atom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of an indomethacin–nicotinamide (1 : 1) cocrystal produced by milling has been determined from laboratory powder X-ray diffraction (PXRD) data. The hydrogen bonding motifs observed in the structure represent one of the most probable of all the possible combinations of donors and acceptors in the constituent molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a compliant neural interface designed to record bladder afferent activity. We developed the implant's microfabrication process using multiple layers of silicone rubber and thin metal so that a gold microelectrode array is embedded within four parallel polydimethylsiloxane (PDMS) microchannels (5 mm long, 100 μm wide, 100 μm deep). Electrode impedance at 1 kHz was optimized using a reactive ion etching (RIE) step, which increased the porosity of the electrode surface. The electrodes did not deteriorate after a 3 month immersion in phosphate buffered saline (PBS) at 37 °C. Due to the unique microscopic topography of the metal film on PDMS, the electrodes are extremely compliant and can withstand handling during implantation (twisting and bending) without electrical failure. The device was transplanted acutely to anaesthetized rats, and strands of the dorsal branch of roots L6 and S1 were surgically teased and inserted in three microchannels under saline immersion to allow for simultaneous in vivo recordings in an acute setting. We utilized a tripole electrode configuration to maintain background noise low and improve the signal to noise ratio. The device could distinguish two types of afferent nerve activity related to increasing bladder filling and contraction. To our knowledge, this is the first report of multichannel recordings of bladder afferent activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The projected hand illusion (PHI) is a variant of the rubber hand illusion (RHI), and both are commonly used to study mechanisms of self-perception. A questionnaire was developed by Longo et al. (2008) to measure qualitative changes in the RHI. Such psychometric analyses have not yet been conducted on the questionnaire for the PHI. The present study is an attempt to validate minor modifications of the questionnaire of Longo et al. to assess the PHI in a community sample (n = 48) and to determine the association with selected demographic (age, sex, years of education), cognitive (Digit Span), and clinical (psychotic-like experiences) variables. Principal components analysis on the questionnaire data extracted four components: Embodiment of “Other” Hand, Disembodiment of Own Hand, Deafference, and Agency—in both synchronous and asynchronous PHI conditions. Questions assessing “Embodiment” and “Agency” loaded onto orthogonal components. Greater illusion ratings were positively associated with being female, being younger, and having higher scores on psychotic-like experiences. There was no association with cognitive performance. Overall, this study confirmed that self-perception as measured with PHI is a multicomponent construct, similar in many respects to the RHI. The main difference lies in the separation of Embodiment and Agency into separate constructs, and this likely reflects the fact that the “live” image of the PHI presents a more realistic picture of the hand and of the stroking movements of the experimenter compared with the RHI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individuals with schizophrenia, particularly those with passivity symptoms, may not feel in control of their actions, believing them to be controlled by external agents. Cognitive operations that contribute to these symptoms may include abnormal processing in agency as well as body representations that deal with body schema and body image. However, these operations in schizophrenia are not fully understood, and the questions of general versus specific deficits in individuals with different symptom profiles remain unanswered. Using the projected-hand illusion (a digital video version of the rubber-hand illusion) with synchronous and asynchronous stroking (500 ms delay), and a hand laterality judgment task, we assessed sense of agency, body image, and body schema in 53 people with clinically stable schizophrenia (with a current, past, and no history of passivity symptoms) and 48 healthy controls. The results revealed a stable trait in schizophrenia with no difference between clinical subgroups (sense of agency) and some quantitative (specific) differences depending on the passivity symptom profile (body image and body schema). Specifically, a reduced sense of self-agency was a common feature of all clinical subgroups. However, subgroup comparisons showed that individuals with passivity symptoms (both current and past) had significantly greater deficits on tasks assessing body image and body schema, relative to the other groups. In addition, patients with current passivity symptoms failed to demonstrate the normal reduction in body illusion typically seen with a 500 ms delay in visual feedback (asynchronous condition), suggesting internal timing problems. Altogether, the results underscore self-abnormalities in schizophrenia, provide evidence for both trait abnormalities and state changes specific to passivity symptoms, and point to a role for internal timing deficits as a mechanistic explanation for external cues becoming a possible source of self-body input.