950 resultados para resonance energy level
Resumo:
Several approaches can be used to analyse performance, energy consumption and CO2 emissions in freight transport. In this paper we define and apply a vehicle-oriented, bottom up survey approach, the so called ‘vehicle approach’, in contrast to a ‘supply chain approach’. The main objective of the approach is to assess the impacts of various freight transport operations on efficiency and energy use. We apply the approach, comparing official statistics on freight transport and energy efficiency in Britain and France. Results on freight intensity, vehicle utilisation, fuel use, fuel efficiency and CO2 intensity are compared for the two countries. The results indicate comparable levels of operational and fuel efficiency in road freight transport operations in the two countries. Issues that can be addressed with the vehicle approach include: the impacts of technology innovations and logistics decisions implemented in freight companies, and the quantification of the effect of policy measures on fuel use at the national level.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
In competitive electricity markets with deep concerns at the efficiency level, demand response programs gain considerable significance. In the same way, distributed generation has gained increasing importance in the operation and planning of power systems. Grid operators and utilities are taking new initiatives, recognizing the value of demand response and of distributed generation for grid reliability and for the enhancement of organized spot market´s efficiency. Grid operators and utilities become able to act in both energy and reserve components of electricity markets. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus distribution network with 32 medium voltage consumers.
Resumo:
In competitive electricity markets with deep concerns for the efficiency level, demand response programs gain considerable significance. As demand response levels have decreased after the introduction of competition in the power industry, new approaches are required to take full advantage of demand response opportunities. This paper presents DemSi, a demand response simulator that allows studying demand response actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. The use of DemSi by a retailer in a situation of energy shortage, is presented. Load reduction is obtained using a consumer based price elasticity approach supported by real time pricing. Non-linear programming is used to maximize the retailer’s profit, determining the optimal solution for each envisaged load reduction. The solution determines the price variations considering two different approaches, price variations determined for each individual consumer or for each consumer type, allowing to prove that the approach used does not significantly influence the retailer’s profit. The paper presents a case study in a 33 bus distribution network with 5 distinct consumer types. The obtained results and conclusions show the adequacy of the used methodology and its importance for supporting retailers’ decision making.
Resumo:
Coastal low-level jets (CLLJ) are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind). This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF) mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989-2007). The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.
Resumo:
Recent changes in the operation and planning of power systems have been motivated by the introduction of Distributed Generation (DG) and Demand Response (DR) in the competitive electricity markets' environment, with deep concerns at the efficiency level. In this context, grid operators, market operators, utilities and consumers must adopt strategies and methods to take full advantage of demand response and distributed generation. This requires that all the involved players consider all the market opportunities, as the case of energy and reserve components of electricity markets. The present paper proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources' participation can be performed in both energy and reserve contexts. This methodology contemplates the probability of actually using the reserve and the distribution network constraints. Its application is illustrated in this paper using a 32-bus distribution network with 66 DG units and 218 consumers classified into 6 types of consumers.
Resumo:
Energy consumption is one of the major issues for modern embedded systems. Early, power saving approaches mainly focused on dynamic power dissipation, while neglecting the static (leakage) energy consumption. However, technology improvements resulted in a case where static power dissipation increasingly dominates. Addressing this issue, hardware vendors have equipped modern processors with several sleep states. We propose a set of leakage-aware energy management approaches that reduce the energy consumption of embedded real-time systems while respecting the real-time constraints. Our algorithms are based on the race-to-halt strategy that tends to run the system at top speed with an aim to create long idle intervals, which are used to deploy a sleep state. The effectiveness of our algorithms is illustrated with an extensive set of simulations that show an improvement of up to 8% reduction in energy consumption over existing work at high utilization. The complexity of our algorithms is smaller when compared to state-of-the-art algorithms. We also eliminate assumptions made in the related work that restrict the practical application of the respective algorithms. Moreover, a novel study about the relation between the use of sleep intervals and the number of pre-emptions is also presented utilizing a large set of simulation results, where our algorithms reduce the experienced number of pre-emptions in all cases. Our results show that sleep states in general can save up to 30% of the overall number of pre-emptions when compared to the sleep-agnostic earliest-deadline-first algorithm.
Resumo:
The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.
Resumo:
The provision of reserves in power systems is of great importance in what concerns keeping an adequate and acceptable level of security and reliability. This need for reserves and the way they are defined and dispatched gain increasing importance in the present and future context of smart grids and electricity markets due to their inherent competitive environment. This paper concerns a methodology proposed by the authors, which aims to jointly and optimally dispatch both generation and demand response resources to provide the amounts of reserve required for the system operation. Virtual Power Players are especially important for the aggregation of small size demand response and generation resources. The proposed methodology has been implemented in MASCEM, a multi agent system also developed at the authors’ research center for the simulation of electricity markets.
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
Dissertação para obtenção do Grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização Sustentáveis
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Energy conservation in chemotrophic anaerobic bacteria is achieved by two possible processes, substrate level phosphorylation (SLP) and electron transfer phosphorylation (ETP). This second mechanism, also known as respiration, involves chemiosmotic coupling. However, a third mechanism for energy coupling was recently proposed: the flavin-based electron bifurcation (FBEB). (...)
Resumo:
The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.
Resumo:
Energy balance is the difference between metabolizable energy intake and total energy expenditure. Energy intake is difficult to measure accurately; changes in body weight, for example, are not a good measure of the adequacy of energy intake, because fluctuations in body weight are common even if the overall trend is toward weight loss. It is now customary to assess energy requirements indirectly from total energy expenditure. Total energy expenditure consists of basal metabolism, postprandial thermogenesis, and physical activity. Energy expenditure is related to both body weight and body composition. A reduction in total energy expenditure accompanies weight loss, because basal metabolic rate decreases with the loss of lean tissue mass. Similarly, with weight gain, there is an increase in basal metabolic rate, because lean tissue mass grows to support the increase in fat tissue mass. Excess energy intake over energy expenditure causes weight gain and an accompanying increase in total energy expenditure. Following a period of adaptation, total energy expenditure will match energy intake and body weight will stabilize at a higher level. This same relationship holds for weight loss. Respiratory quotient (measured in steady state) is an indication of the proportion of energy expenditure derived from fat and carbohydrate oxidation. Over long periods of time, fat balance is equivalent to energy balance, as an excess of fat intake over fat oxidation causes fat storage.