998 resultados para resistência mecânica à penetração


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cobalt-chromium alloy is extensively used in the Odontology for the confection of metallic scaffolding in partial removable denture. During the last few years, it has been reported an increasing number of premature imperfections, with a few months of prosthesis use. The manufacture of these components is made in prosthetic laboratories and normally involves recasting, using parts of casting alloy and parts of virgin alloy. Therefore, the objective of the present study was to analyze the mechanical properties of a commercial cobalt-chromium alloy of odontological use after successive recasting, searching information to guide the dental prosthesis laboratories in the correct manipulation of the cobalt-chromium alloy in the process of casting and the possible limits of recasting in the mechanical properties of this material. Seven sample groups were confectioned, each one containing five test bodies, divided in the following way: G1: casting only with virgin alloy; G2: casting with 50% of the alloy of the G1 + 50% of virgin alloy; G3: casting with 50% of the alloy of the G2 + 50% of virgin alloy; G4: casting with 50% of the alloy of the G3 + 50% of virgin alloy; G5: 50% of alloy of the G4 + 50% of virgin alloy; G6: 50% of alloy of the G5 + 50% of virgin alloy and finally the G7, only with recasting alloy. The modifications in the mechanical behavior of the alloy were evaluated. Moreover, it was carried the micro structural characterization of the material by optic and electronic scanning microscopy, and X ray diffraction.and fluorescence looking into the correlatation of the mechanical alterations with structural modifications of the material caused by successive recasting process. Generally the results showed alterations in the fracture energy of the alloy after successive recasting, resulting mainly of the increasing presence of pores and large voids, characteristic of the casting material. Thus, the interpretation of the results showed that the material did not reveal significant differences with respect to the tensile strength or elastic limit, as a function of successive recasting. The elastic modulus increased from the third recasting cycle on, indicating that the material can be recast only twice. The fracture energy of the material decreased, as the number of recasting cycles increased. With respect to the microhardness, the statistical analyses showedno significant differences. Electronic scanning microscopy revealed the presence of imperfections and defects, resulting of the recasting process. X ray diffraction and fluorescence did not show alterations in the composition of the alloy or the formation of crystalline phases between the analyzed groups. The optical micrographs showed an increasing number of voids and porosity as the material was recast. Therefore, the general conclusion of this study is that the successive recasting of of Co-Cr alloys affects the mechanical properties of the material, consequently leading to the failure of the prosthetic work. Based on the results, the best recommendadition is that the use of the material should be limited to two recasting cycles

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-Ceramic (M/C) Zirconia-stainless steel interfaces have been processed through brazing techniques due to the excellent combination of properties such as high temperature stability, high corrosion resistance and good mechanical properties. However, some M/C interfaces show some defects, like porosity and cracks results in the degradation of the interfaces, leading even to its total rupture. Most of time, those defects are associated with an improper brazing parameters selection to the M/C system. In this work, ZrO2 Y-TZP and ZrO2 Mg - PSZ were joint with the stainless steel grade 304 by brazing using a eutectic silver-copper (Ag28Cu) interlayer alloy with different thermal cycles. Ceramic surfaces were previous mechanically metallized with titanium to improve adhesion of the system. The effect of temperature on the M/C interface was studied. SEM-EDS and 3 point flexural bend test were performed to evaluate morphology, chemical composition and mechanical resistance of the M/C interfaces. Lower thermal cycle temperatures produced better results of mechanical resistance, and more regular/ homogeneous reaction layers between braze alloy and metal-ceramic surfaces. Also was proved the AgCu braze alloy activation in situ by titanium

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este estudo investiga a otimização da resistência ao cisalhamento no plano de juntas de sobreposição co-curadas do compósito termoplástico unidirecional auto-reforçado de polietileno de baixa densidade reciclado reforçado por fibras de polietileno de ultra alto peso molecular através da relação desta resistência com os parâmetros processuais de prensagem a quente para a conformação da junta (pressão, temperatura, tempo e comprimento). A matriz teve sua estrutura química analisada para verificar potenciais degradações devidas à sua origem de reciclagem. Matriz e reforço foram caracterizados termicamente para definir a janela de temperatura de processamento de junta a ser estudada. A elaboração das condições de cura dos corpos de prova foi feita de acordo com a metodologia de Projeto de Experimento de Superfície de Resposta e a relação entre a resistência ao cisalhamento das juntas e os respectivos parâmetros de cura foi obtida através de equação de regressão gerada pelo método dos Mínimos Quadrados Ordinários. A caracterização mecânica em tração do material foi analisada micro e macromecanicamente. A análise química da matriz não demonstrou a presença de grupos carboxílicos que evidenciassem degradação por ramificações de cadeia e reticulação advindos da reciclagem do material. As metodologias de ensaio propostas demonstraram ser eficazes, podendo servir como base para a constituição de normas técnicas. Demonstrou-se que é possível obter juntas com resistência ótima ao cisalhamento de 6,88 MPa quando processadas a 1 bar, 115°C, 5 min e com 12 mm. A análise da fratura revelou que a ruptura por cisalhamento das juntas foi precedida por múltiplas fissuras longitudinais induzidas por sucessivos debondings, tanto dentro quanto fora da junta, devido à tensão transversal acumulada na mesma, proporcional a seu comprimento. A temperatura demonstrou ser o parâmetro de processamento mais relevante para a performance da junta, a qual é pouco afetada por variações na pressão e tempo de cura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidrug resistance, MDR is a major obstacle for cancer chemotherapy. MDR can be reversed by drugs that vary in their chemical structure and main biological activity. Many efforts have been done to overcome MDR based on studies of structure-activity relationships and in this review we summarize some aspects of MDR mediated by P-glycoprotein (P-gp), as the most experimentally and clinically tested form of drug resistance. The most significant MDR mechanisms revealed until now are shortly discussed. Physicochemical and structural properties of MDR modulators, measures of the MDR reversal, and QSAR studies are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative proposal for floor heating system by means of electric resistance for both chick and piggy installation is presented in this work. Several formulations of rice husk and cement mortar boards were used. An electronic device controlled all board temperature. This system presented a good efficiency design. The conventional cement mortar mixed with rice husk showed a better performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was carried out with the objective of studying the spatial variability of the physical attributes of a Red-Yellow Ultisol under pasture and secondary vegetation in natural regeneration. Two areas were chosen in a hillside, with the soil sampling to the depth of 0-0.2 m, with the georeferenced points in a regular grid of 10x10 m, totalizing 64 points. In each point it was evaluated the total volume of porosity, macroporosity, microporosity, bulk density, soil penetration resistance and soil water content. The studied attributes in the pasture area present indicator of soil compaction for the animals' traffic, with moderate and strong structure of spatial dependence, except for the macroporosity and penetration resistance. In the area of secondary vegetation (VN) only the macroporosity does not present spatial dependence. The total volume of porosity and the bulk density present the same spatial standard in the area under pasture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the behavior of three bored piles conducted in diabasic soil submitted to uplift forces. The piles were built at the site for Experimental Studies in Soil Mechanics and Foundations of UNICAMP, located in the city of Campinas, Brazil. Field tests have already been conducted at the site (SPT, CPT, DMT and PMT), as well as laboratory tests by using sample soils taken from a well up to 17 m deep. The water table is not checked until a depth of 17 m. In order to check the behavior of the piles when submitted to uplift forces, slow static load tests were carried out as the recommendations of NBR 12131. The carrying capacity of these piles was also provided by means of theoretical methods, appropriate for uplift forces, and through semi-empirical methods appropriate for compression forces, considering only the portion of lateral resistance. The values estimated by using the considered methods were compared to those obtained by means of load tests. One of the tested piles was extracted from the soil to be the subject of a study on its geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-two Triceps brachii muscle obtained from 11 cows aged 3 and 4 years , killed in an experimental slaughter plant, were submitted to mechanical tenderization, injection with acetic acid 0,1M and lactic acid 0,2M, ageing for 9 and 14 days and electrical stimulation (250v - 60Hz - 90s), some of them were reserved as a control group, without treatment. The 14 days ageing time presented 21% of increase in subjective tenderness and 12% of reduction in shear force, these values were similar to the electrical stimulated meat. However the injection with acids and the ageing time 9 days did not present significant effect in the texture. Although the shear force values of mechanical tenderized meat was the shortest among all treatments, suspect of superestimation because of the fractures plan created by this process. Another analyses were carried out: pH reduction curve, R value; colour analysis; weight losses by cooking and by treatment; and microbiological analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUÇÃO: apesar da colagem direta despender menor tempo clínico, com maior preservação da integridade gengival, ainda hoje se observa uma alta incidência de bandagem dos molares. Portanto, torna-se interessante a idealização de recursos para o aumento da eficiência desse procedimento para dentes submetidos a maiores impactos mastigatórios, como, por exemplo, os molares. OBJETIVO: esse estudo teve o propósito de avaliar se a resistência à adesão com a aplicação de uma camada de resina adicional na região oclusal da interface tubo/dente aumenta a qualidade do procedimento de colagem direta de tubos em molares. MÉTODOS: selecionou-se uma amostra composta por 40 terceiros molares inferiores, que foram aleatoriamente divididos em 2 grupos: Grupo 1 - colagem direta convencional, seguida pela aplicação de uma camada de resina na oclusal da interface tubo/dente; e Grupo 2 - colagem direta convencional. O teste de resistência ao cisalhamento foi realizado 24 horas após a colagem, utilizando-se uma máquina de ensaio universal, operando a uma velocidade de 0,5mm/min. Os resultados foram analisados por meio do teste t independente. RESULTADOS: os valores médios obtidos nos testes de cisalhamento foram: 17,08MPa para o Grupo 1 e 12,60MPa para o Grupo 2. O Grupo 1 apresentou uma resistência ao cisalhamento estatisticamente significativa mais alta do que o Grupo 2. CONCLUSÃO: a aplicação de uma camada adicional de resina na oclusal da interface tubo/dente aumenta a qualidade da adesão do procedimento de colagem direta de tubos ortodônticos em molares.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the fracture resistance of weakened roots restored with glass fiber posts, composite resin cores and complete metal crowns. Thirty maxillary canines were randomly divided into 3 groups of 10 teeth each: teeth without weakened roots (control); teeth with partially weakened roots (PWR) and teeth with and largely weakened roots (LWR). The control group was restored with glass fiber posts and a composite resin core. Teeth in the PWR and LWR groups were flared internally to standardized dimensions in order to simulate root weakness. Thereafter, the roots were partially filled with composite resin and restored in the same way as in the control group. The specimens were exposed to 250,000 cycles in a controlled chewing simulator. All intact specimens were subjected to a static load (N) in a universal testing machine at 45 degrees to the long axis of the tooth until failure. Data were analyzed by one-way ANOVA and Dunnett's test for multiple comparisons (p=0.05). There were statistically significant difference differences (p<0.01) among the groups (control group = 566.73 N; PWR = 409.64 N; and LWR = 410.91 N), with significantly higher fracture strength for the control group. There was no statistically significant difference (p>0.05) between the weakened groups. The results of this study showed that thicker root dentin walls significantly increase the fracture resistance of endodontically treated teeth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of chemical and mechanical surface treatments for cast metal alloys on the bond strength of an indirect composite resin (Artglass) to commercially pure titanium (cpTi). Thirty cylindrical metal rods (3 mm diameter x 60 mm long) were cast in grade-1 cpTi and randomly assigned to 6 groups (n=5) according to the received surface treatment: sandblasting; chemical treatment; mechanical treatment - 0.4 mm beads; mechanical treatment - 0.6 mm beads; chemical/mechanical treatment - 0.4 mm; and chemical/mechanical treatment - 0.6 mm beads. Artglass rings (6.0 mm diameter x 2.0 mm thick) were light cured around the cpTi rods, according manufacturer's specifications. The specimens were invested in hard gypsum and their bond strength (in MPa) to the rods was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 500 kgf load cell. Data were analyzed statistically by one-way ANOVA and Tukey test (a=5%). The surface treatments differed significantly from each other (p<0.05) regarding the recorded bond strengths. Chemical retention and sandblasting showed statistically similar results to each other (p=0.139) and both had significantly lower bond strengths (p<0.05) than the other treatments. In conclusion, mechanical retention, either associated or not to chemical treatment, provided higher bond strength of the indirect composite resin to cpTi.