995 resultados para require solutions
Resumo:
BACKGROUND: Dementia is a significant worldwide health issue, however, it is often insidious in onset and difficult to diagnose, therefore GPs have expressed a limited confidence in their diagnostic skills, extending into their prognostication of the disease. As a result diagnosing the terminal phase of dementia has been identified as a significant challenge to delivering effective palliative care. Therefore, identifying the challenges faced by the GPs in this field will help to guide their training and support, and as a result could assist in the provision of sustained and effective palliative care for their dementia patients.
Resumo:
Hydrous cerium oxide (HCO) was synthesized by intercalation of solutions of cerium(III) nitrate and sodium hydroxide and evaluated as an adsorbent for the removal of hexavalent chromium from aqueous solutions. Simple batch experiments and a 25 factorial experimental design were employed to screen the variables affecting Cr(VI) removal efficiency. The effects of the process variables; solution pH, initial Cr(VI) concentration, temperature, adsorbent dose and ionic strength were examined. Using the experimental results, a linear mathematical model representing the influence of the different variables and their interactions was obtained. Analysis of variance (ANOVA) demonstrated that Cr(VI) adsorption significantly increases with decreased solution pH, initial concentration and amount of adsorbent used (dose), but slightly decreased with an increase in temperature and ionic strength. The optimization study indicates 99% as the maximum removal at pH 2, 20 °C, 1.923 mM of metal concentration and a sorbent dose of 4 g/dm3. At these optimal conditions, Langmuir, Freundlich and Redlich–Peterson isotherm models were obtained. The maximum adsorption capacity of Cr(VI) adsorbed by HCO was 0.828 mmol/g, calculated by the Langmuir isotherm model. Desorption of chromium indicated that the HCO adsorbent can be regenerated using NaOH solution 0.1 M (up to 85%). The adsorption interactions between the surface sites of HCO and the Cr(VI) ions were found to be a combined effect of both anion exchange and surface complexation with the formation of an inner-sphere complex.
Resumo:
The absolute yield of hydroxyl radicals per unit of deposited X-ray energy is determined for the first time for irradiated aqueous solutions containing metal nanoparticles based on a “reference” protocol. Measurements are made as a function of dose rate and nanoparticle concentration. Possible mechanisms for hydroxyl radical production are considered in turn: energy deposition in the nanoparticles followed by its transport into the surrounding environment is unable to account for observed yield whereas energy deposition in the water followed by a catalytic-like reaction at the water-nanoparticle interface can account for the total yield and its dependence on dose rate and nanoparticle concentration. This finding is important because current models used to account for nanoparticle enhancement to radiobiological damage only consider the primary interaction with the nanoparticle, not with the surrounding media. Nothing about the new mechanism appears to be specific to gold, the main requirements being the formation of a structured water layer in the vicinity of the nanoparticle possibly through the interaction of its charge and the water dipoles. The massive hydroxyl radical production is relevant to a number of application fields, particularly nanomedicine since the hydroxyl radical is responsible for the majority of radiation-induced DNA damage.
Resumo:
The historic significance of the Good Friday Agreement and its role in ending organized political violence is acknowledged at the outset. The article then goes on to probe the roots of the political paralysis built into the architecture of the Agreement that are predicated on a misplaced political and cultural symmetry between the “two communities.” It is suggested that the institutionalized relationship between Northern Ireland and the rest of the U.K. facilitates a cross-party, populist, socio-economic consensus among the nationalist and unionist political parties on the welfare state, taxation and maintaining the massive British subvention to the region. This in turn allows them to concentrate on a divisive culturalist politics, i.e., on antagonistic forms of cultural and identity politics over such issues as flags, parades, and the legacy of the “Troubles” which spills over into gridlock into many areas of regional administration. The article argues for a much broader understanding of culture and identity rooted in the different, if overlapping and interdependent, material realities of both communities while challenging the idea of two cultures/identities as fixed, mutually exclusive, non-negotiable and mutually antagonistic. It then focuses on the importance of Belfast as a key arena which will determine the long-term prospects of an alternative and more constructive form of politics, and enable a fuller recognition of the fundamental asymmetries and inter-dependence between the “two communities.” In the long run, this involves re-defining and reconstructing what is meant by the “Union” and a “United Ireland.”
Resumo:
Introduction
As general practice (GP) is the main source of referrals to neurologists, neurology education for GP trainees is important. We investigated the existence of neurophobia, contributing factors and potential prevention strategies among GP trainees.
MethodsIn a questionnaire survey interest, knowledge, confidence and perceived difficulty in neurology were compared with different medical specialties. Reasons for difficulty with neurology, postgraduate neurology education experience, learning methods and suggested teaching improvements were examined.
ResultsOf 205 GP trainees, 118 (58%) completed the questionnaire. Threshold analyses justified categorical intervals for the Likert responses. Trainees recorded poorer knowledge (p < 0.001), less confidence (p < 0.001) and more perceived difficulty (p < 0.001) with neurology than with any other medical specialty. GP trainees had less interest in neurology than any other medical specialty (Duncan test, p < 0.001). There was a similar gradation in difficulty and confidence perception across medical specialties. Hospital and community-based neurology teaching was graded as “poor” or “very poor” by over 60% of GP trainees. There were multiple perceived causes of neurophobia, including neuroanatomy and poor quality teaching. More organised clinical teaching and referral guidance were suggested to address GP neurophobia.
ConclusionsNeurophobia is common among GP trainees in Northern Ireland. GP trainees have clear and largely uniform ideas on improving their neurology education. GP training posts should reflect the importance of neurology within the GP curriculum.
Resumo:
We present optical spectra and light curves for three hydrogen-poor superluminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a fewdays aftermaximum light to 100 d later shows them to be fairly typical of this class, with spectra dominated by Ca II, MgII, FeII, and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, Ni-56 decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 d after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models powered by radioactivity require unrealistic parameters to reproduce the observed light curves, as found by previous studies. Both magnetar heating and circumstellar interaction still appear to be viable candidates. A large diversity is emerging in observed tail-phase luminosities, with magnetar models failing in some cases to predict the rapid drop in flux. This would suggest either that magnetars are not responsible, or that the X-ray flux from the magnetar wind is not fully trapped. The light curve of one object shows a distinct rebrightening at around 100 d after maximum light. We argue that this could result either from multiple shells of circumstellar material, or from a magnetar ionization front breaking out of the ejecta.
Resumo:
The general practitioner (GP) is in a pivotal position to initiate and adapt care for their patients living with dementia. This study aimed to elicit GPs' perceptions of the potential barriers and solutions to the provision of good-quality palliative care in dementia in their practices. A postal survey of GPs across Northern Ireland was conducted with open-ended items soliciting for barriers in their practices and possible solutions; 40.6% (138/340) were returned completed. Barriers to palliative care in dementia were perceived to be a dementia knowledge deficit for healthcare staff and the public, a resource shortfall within the GP practice and community, poor team coordination alongside inappropriate dementia care provision, and disagreements from and within families. These findings have significant implications for educators and clinicians as enhanced dementia education and training were highlighted as a strong agenda for GPs with the suggestions of dementia awareness programmes for the public.
Resumo:
We present a new algorithm for exactly solving decision making problems represented as influence diagrams. We do not require the usual assumptions of no forgetting and regularity; this allows us to solve problems with simultaneous decisions and limited information. The algorithm is empirically shown to outperform a state-of-the-art algorithm on randomly generated problems of up to 150 variables and 10^64 solutions. We show that these problems are NP-hard even if the underlying graph structure of the problem has low treewidth and the variables take on a bounded number of states, and that they admit no provably good approximation if variables can take on an arbitrary number of states.
Resumo:
We present a new algorithm for exactly solving decision making problems represented as influence diagrams. We do not require the usual assumptions of no forgetting and regularity; this allows us to solve problems with simultaneous decisions and limited information. The algorithm is empirically shown to outperform a state-of-the-art algorithm on randomly generated problems of up to 150 variables and 10^64 solutions. We show that the problem is NP-hard even if the underlying graph structure of the problem has small treewidth and the variables take on a bounded number of states, but that a fully polynomial time approximation scheme exists for these cases. Moreover, we show that the bound on the number of states is a necessary condition for any efficient approximation scheme.
Resumo:
Herein, we report the densities and speeds of sound in binary mixtures of three hydrophobic and one hydrophilic ionic liquids: 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C4mim][NTf2], 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide, [C4mpyr][NTf2], 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C3mim][NTf2] and 1-ethyl-3-methylimidazolium thiocyanate, [C2mim][SCN], with water at 298.15 K and 0.1 MPa. The concentration range of water, which encompassed relatively small values well below the saturation point, is often regarded as an impurity for hydrophobic ionic liquids. On the basis of experimental results the molar volume, adiabatic molar compressibility, partial molar volume and apparent molar volume, as well as, partial molar and apparent molar isentropic compressibility properties were then calculated. Interesting results are obtained using the solutions based on the hydrophilic [C2mim][SCN], since these mixtures are characterized by relatively low density and high values of speed of sound. Furthermore, the partial molar volumes and partial molar adiabatic compressibilities of water in solution with [C2mim][SCN] are the lowest among the investigated in mixtures with ionic liquids. However, in the case of the hydrophobic ionic liquid solutions, only small differences are observed for molar adiabatic compressibilities with the change of the cation structure, i.e. for water + [C4mim][NTf2] or + [C4mpyr][NTf2]. A more pronounced difference has been observed for the partial molar compressibility of water in solutions with these two ionic liquids.
Resumo:
Ceria (CeO2) and ceria-based composite materials, especially Ce1-xZrxO2 solid solutions, possess a wide range of applications in many important catalytic processes, such as three-way catalysts, owing to their excellent oxygen storage capacity (OSC) through the oxygen vacancy formation and refilling. Much of this activity has focused on the understanding of the electronic and structural properties of defective CeO2 with and without doping, and comprehending the determining factor for oxygen vacancy formation and the rule to tune the formation energy by doping has constituted a central issue in material chemistry related to ceria. However, the calculation on electronic structures and the corresponding relaxation patterns in defective CeO2-x oxides remains at present a challenge in the DFT framework. A pragmatic approach based on density functional theory with the inclusion of on-site Coulomb correction, i.e. the so-called DFT + U technique, has been extensively applied in the majority of recent theoretical investigations. Firstly, we review briefly the latest electronic structure calculations of defective CeO2(111), focusing on the phenomenon of multiple configurations of the localized 4f electrons, as well as the discussions of its formation mechanism and the catalytic role in activating the O-2 molecule. Secondly, aiming at shedding light on the doping effect on tuning the oxygen vacancy formation in ceria-based solid solutions, we summarize the recent theoretical results of Ce1-xZrxO2 solid solutions in terms of the effect of dopant concentrations and crystal phases. A general model on O vacancy formation is also discussed; it consists of electrostatic and structural relaxation terms, and the vital role of the later is emphasized. Particularly, we discuss the crucial role of the localized structural relaxation patterns in determining the superb oxygen storage capacity in kappa-phase Ce1-xZr1-xO2. Thirdly, we briefly discuss some interesting findings for the oxygen vacancy formation in pure ceria nanoparticles (NPs) uncovered by DFT calculations and compare those with the bulk or extended surfaces of ceria as well as different particle sizes, emphasizing the role of the electrostatic field in determining the O vacancy formation.
Resumo:
This special issue provides the latest research and development on wireless mobile wearable communications. According to a report by Juniper Research, the market value of connected wearable devices is expected to reach $1.5 billion by 2014, and the shipment of wearable devices may reach 70 million by 2017. Good examples of wearable devices are the prominent Google Glass and Microsoft HoloLens. As wearable technology is rapidly penetrating our daily life, mobile wearable communication is becoming a new communication paradigm. Mobile wearable device communications create new challenges compared to ordinary sensor networks and short-range communication. In mobile wearable communications, devices communicate with each other in a peer-to-peer fashion or client-server fashion and also communicate with aggregation points (e.g., smartphones, tablets, and gateway nodes). Wearable devices are expected to integrate multiple radio technologies for various applications' needs with small power consumption and low transmission delays. These devices can hence collect, interpret, transmit, and exchange data among supporting components, other wearable devices, and the Internet. Such data are not limited to people's personal biomedical information but also include human-centric social and contextual data. The success of mobile wearable technology depends on communication and networking architectures that support efficient and secure end-to-end information flows. A key design consideration of future wearable devices is the ability to ubiquitously connect to smartphones or the Internet with very low energy consumption. Radio propagation and, accordingly, channel models are also different from those in other existing wireless technologies. A huge number of connected wearable devices require novel big data processing algorithms, efficient storage solutions, cloud-assisted infrastructures, and spectrum-efficient communications technologies.
Resumo:
Embedded memories account for a large fraction of the overall silicon area and power consumption in modern SoC(s). While embedded memories are typically realized with SRAM, alternative solutions, such as embedded dynamic memories (eDRAM), can provide higher density and/or reduced power consumption. One major challenge that impedes the widespread adoption of eDRAM is that they require frequent refreshes potentially reducing the availability of the memory in periods of high activity and also consuming significant amount of power due to such frequent refreshes. Reducing the refresh rate while on one hand can reduce the power overhead, if not performed in a timely manner, can cause some cells to lose their content potentially resulting in memory errors. In this paper, we consider extending the refresh period of gain-cell based dynamic memories beyond the worst-case point of failure, assuming that the resulting errors can be tolerated when the use-cases are in the domain of inherently error-resilient applications. For example, we observe that for various data mining applications, a large number of memory failures can be accepted with tolerable imprecision in output quality. In particular, our results indicate that by allowing as many as 177 errors in a 16 kB memory, the maximum loss in output quality is 11%. We use this failure limit to study the impact of relaxing reliability constraints on memory availability and retention power for different technologies.
Resumo:
For the reliable analysis and modeling of astrophysical, laser-produced, and fusion plasmas, atomic data are required for a number of parameters, including energy levels, radiative rates, and electron impact excitation rates. Such data are desired for a range of elements (H to W) and their many ions. However, measurements of atomic data, mainly for radiative and excitation rates, are not feasible for many species, and therefore, calculations are needed. For some ions (such as of C, Fe, and Kr), there is a variety of calculations available in the literature, but often, they differ significantly from one another. Therefore, there is a great demand from the user community to have data "assessed" for accuracy so that they can be confidently applied to the modeling of plasmas. In this paper we highlight the difficulties in assessing atomic data and offer some solutions for improving the accuracy of calculated results.