935 resultados para relative utility models
Resumo:
The continuing need for governments to radically improve the delivery of public services has led to a new, holistic government reform strategy labeled “Transformational Government” that strongly emphasizes customer-centricity. Attention has turned to online portals as a cost effective front-end to deliver services and engage customers as well as to the corresponding organizational approaches for the back-end to decouple the service interface from the departmental structures. The research presented in this paper makes three contributions: Firstly, a systematic literature review of approaches to the evaluation of online portal models in the public sector is presented. Secondly, the findings of a usability study comparing the online presences of the Queensland Government, the UK Government and the South Australian Government are reported and the relative strengths and weaknesses of the different approaches are discussed. And thirdly, the limitations of the usability study in the context of a broader “Transformational Government” approach are identified and service bundling is suggested as an innovative solution to further improve online service delivery.
Resumo:
Process modeling grammars are used to create scripts of a business domain that a process-aware information system is intended to support. A key grammatical construct of such grammars is known as a Gateway. A Gateway construct is used to describe scenarios in which the workflow of a process diverges or converges according to relevant conditions. Gateway constructs have been subjected to much academic discussion about their meaning, role and usefulness, and have been linked to both process-modeling errors and process-model understandability. This paper examines perceptual discriminability effects of Gateway constructs on an individual's abilities to interpret process models. We compare two ways of expressing two convergence and divergence patterns – Parallel Split and Simple Merge – implemented in a process modeling grammar. On the basis of an experiment with 98 students, we provide empirical evidence that Gateway constructs aid the interpretation of process models due to a perceptual discriminability effect, especially when models are complex. We discuss the emerging implications for research and practice, in terms of revisions to grammar specifications, guideline development and design choices in process modeling.
Resumo:
The configuration of comprehensive Enterprise Systems to meet the specific requirements of an organisation up to today is consuming significant resources. The results of failing implementation projects are severe and may even threaten the organisation’s existence. This paper proposes a method which aims at increasing the efficiency of Enterprise Systems implementations. First, we argue that existing process modelling languages that feature different degrees of abstraction for different user groups exist and are used for different purposes which makes it necessary to integrate them. We describe how to do this using the meta models of the involved languages. Second, we motivate that an integrated process model based on the integrated meta model needs to be configurable and elaborate on the mechanisms by which this model configuration can be achieved. We introduce a business example using SAP modelling techniques to illustrate the proposed method.
Resumo:
Biological systems exhibit a wide range of contextual effects, and this often makes it difficult to construct valid mathematical models of their behaviour. In particular, mathematical paradigms built upon the successes of Newtonian physics make assumptions about the nature of biological systems that are unlikely to hold true. After discussing two of the key assumptions underlying the Newtonian paradigm, we discuss two key aspects of the formalism that extended it, Quantum Theory (QT). We draw attention to the similarities between biological and quantum systems, motivating the development of a similar formalism that can be applied to the modelling of biological processes.
Resumo:
The term Design Led Innovation is emerging as a fundamental business process, which is rapidly being adopted by large as well as small to medium sized firms. The value that design brings to an organisation is a different way of thinking, of framing situations and possibilities, doing things and tackling problems: essentially a cultural transformation of the way the firm undertakes its business. Being Design Led is increasingly being seen by business as a driver of company growth, allowing firms to provide a strong point of difference to its stakeholders. Achieving this Design Led process, requires strong leadership to enable the organisation to develop a clear vision for top line growth. Specifically, based on deep customer insights and expanded through customer and stakeholder engagements, the outcomes of which are then adopted by all aspects of the business. To achieve this goal, several tools and processes are available, which need to be linked to new organisational capabilities within a business transformation context. The Design Led Innovation Team focuses on embedding tools and processes within an organisation and matching this with design leadership qualities to enable companies to create breakthrough innovation and achieve sustained growth, through ultimately transforming their business model. As all information for these case studies was derived from publicly accessed data, this resource is not intended to be used as reference material, but rather is a learning tool for designers to begin to consider and explore businesses at a strategic level. It is not the results that are key, but rather the process and philosophies that were used to create these case studies and disseminate this way of thinking amongst the design community. It is this process of unpacking a business guided by the framework of Osterwalder’s Business Model Canvas* which provides an important tool for designers to gain a greater perspective of a company’s true innovation potential.
Resumo:
The health impacts of exposure to ambient temperature have been drawing increasing attention from the environmental health research community, government, society, industries, and the public. Case-crossover and time series models are most commonly used to examine the effects of ambient temperature on mortality. However, some key methodological issues remain to be addressed. For example, few studies have used spatiotemporal models to assess the effects of spatial temperatures on mortality. Few studies have used a case-crossover design to examine the delayed (distributed lag) and non-linear relationship between temperature and mortality. Also, little evidence is available on the effects of temperature changes on mortality, and on differences in heat-related mortality over time. This thesis aimed to address the following research questions: 1. How to combine case-crossover design and distributed lag non-linear models? 2. Is there any significant difference in effect estimates between time series and spatiotemporal models? 3. How to assess the effects of temperature changes between neighbouring days on mortality? 4. Is there any change in temperature effects on mortality over time? To combine the case-crossover design and distributed lag non-linear model, datasets including deaths, and weather conditions (minimum temperature, mean temperature, maximum temperature, and relative humidity), and air pollution were acquired from Tianjin China, for the years 2005 to 2007. I demonstrated how to combine the case-crossover design with a distributed lag non-linear model. This allows the case-crossover design to estimate the non-linear and delayed effects of temperature whilst controlling for seasonality. There was consistent U-shaped relationship between temperature and mortality. Cold effects were delayed by 3 days, and persisted for 10 days. Hot effects were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. It is still unclear whether spatiotemporal models using spatial temperature exposure produce better estimates of mortality risk compared with time series models that use a single site’s temperature or averaged temperature from a network of sites. Daily mortality data were obtained from 163 locations across Brisbane city, Australia from 2000 to 2004. Ordinary kriging was used to interpolate spatial temperatures across the city based on 19 monitoring sites. A spatiotemporal model was used to examine the impact of spatial temperature on mortality. A time series model was used to assess the effects of single site’s temperature, and averaged temperature from 3 monitoring sites on mortality. Squared Pearson scaled residuals were used to check the model fit. The results of this study show that even though spatiotemporal models gave a better model fit than time series models, spatiotemporal and time series models gave similar effect estimates. Time series analyses using temperature recorded from a single monitoring site or average temperature of multiple sites were equally good at estimating the association between temperature and mortality as compared with a spatiotemporal model. A time series Poisson regression model was used to estimate the association between temperature change and mortality in summer in Brisbane, Australia during 1996–2004 and Los Angeles, United States during 1987–2000. Temperature change was calculated by the current day's mean temperature minus the previous day's mean. In Brisbane, a drop of more than 3 �C in temperature between days was associated with relative risks (RRs) of 1.16 (95% confidence interval (CI): 1.02, 1.31) for non-external mortality (NEM), 1.19 (95% CI: 1.00, 1.41) for NEM in females, and 1.44 (95% CI: 1.10, 1.89) for NEM aged 65.74 years. An increase of more than 3 �C was associated with RRs of 1.35 (95% CI: 1.03, 1.77) for cardiovascular mortality and 1.67 (95% CI: 1.15, 2.43) for people aged < 65 years. In Los Angeles, only a drop of more than 3 �C was significantly associated with RRs of 1.13 (95% CI: 1.05, 1.22) for total NEM, 1.25 (95% CI: 1.13, 1.39) for cardiovascular mortality, and 1.25 (95% CI: 1.14, 1.39) for people aged . 75 years. In both cities, there were joint effects of temperature change and mean temperature on NEM. A change in temperature of more than 3 �C, whether positive or negative, has an adverse impact on mortality even after controlling for mean temperature. I examined the variation in the effects of high temperatures on elderly mortality (age . 75 years) by year, city and region for 83 large US cities between 1987 and 2000. High temperature days were defined as two or more consecutive days with temperatures above the 90th percentile for each city during each warm season (May 1 to September 30). The mortality risk for high temperatures was decomposed into: a "main effect" due to high temperatures using a distributed lag non-linear function, and an "added effect" due to consecutive high temperature days. I pooled yearly effects across regions and overall effects at both regional and national levels. The effects of high temperature (both main and added effects) on elderly mortality varied greatly by year, city and region. The years with higher heat-related mortality were often followed by those with relatively lower mortality. Understanding this variability in the effects of high temperatures is important for the development of heat-warning systems. In conclusion, this thesis makes contribution in several aspects. Case-crossover design was combined with distribute lag non-linear model to assess the effects of temperature on mortality in Tianjin. This makes the case-crossover design flexibly estimate the non-linear and delayed effects of temperature. Both extreme cold and high temperatures increased the risk of mortality in Tianjin. Time series model using single site’s temperature or averaged temperature from some sites can be used to examine the effects of temperature on mortality. Temperature change (no matter significant temperature drop or great temperature increase) increases the risk of mortality. The high temperature effect on mortality is highly variable from year to year.
Resumo:
In this paper we present a new simulation methodology in order to obtain exact or approximate Bayesian inference for models for low-valued count time series data that have computationally demanding likelihood functions. The algorithm fits within the framework of particle Markov chain Monte Carlo (PMCMC) methods. The particle filter requires only model simulations and, in this regard, our approach has connections with approximate Bayesian computation (ABC). However, an advantage of using the PMCMC approach in this setting is that simulated data can be matched with data observed one-at-a-time, rather than attempting to match on the full dataset simultaneously or on a low-dimensional non-sufficient summary statistic, which is common practice in ABC. For low-valued count time series data we find that it is often computationally feasible to match simulated data with observed data exactly. Our particle filter maintains $N$ particles by repeating the simulation until $N+1$ exact matches are obtained. Our algorithm creates an unbiased estimate of the likelihood, resulting in exact posterior inferences when included in an MCMC algorithm. In cases where exact matching is computationally prohibitive, a tolerance is introduced as per ABC. A novel aspect of our approach is that we introduce auxiliary variables into our particle filter so that partially observed and/or non-Markovian models can be accommodated. We demonstrate that Bayesian model choice problems can be easily handled in this framework.
Resumo:
Dose kernels may be used to calculate dose distributions in radiotherapy (as described by Ahnesjo et al., 1999). Their calculation requires use of Monte Carlo methods, usually by forcing interactions to occur at a point. The Geant4 Monte Carlo toolkit provides a capability to force interactions to occur in a particular volume. We have modified this capability and created a Geant4 application to calculate dose kernels in cartesian, cylindrical, and spherical scoring systems. The simulation considers monoenergetic photons incident at the origin of a 3 m x 3 x 9 3 m water volume. Photons interact via compton, photo-electric, pair production, and rayleigh scattering. By default, Geant4 models photon interactions by sampling a physical interaction length (PIL) for each process. The process returning the smallest PIL is then considered to occur. In order to force the interaction to occur within a given length, L_FIL, we scale each PIL according to the formula: PIL_forced = L_FIL 9 (1 - exp(-PIL/PILo)) where PILo is a constant. This ensures that the process occurs within L_FIL, whilst correctly modelling the relative probability of each process. Dose kernels were produced for an incident photon energy of 0.1, 1.0, and 10.0 MeV. In order to benchmark the code, dose kernels were also calculated using the EGSnrc Edknrc user code. Identical scoring systems were used; namely, the collapsed cone approach of the Edknrc code. Relative dose difference images were then produced. Preliminary results demonstrate the ability of the Geant4 application to reproduce the shape of the dose kernels; median relative dose differences of 12.6, 5.75, and 12.6 % were found for an incident photon energy of 0.1, 1.0, and 10.0 MeV respectively.
Resumo:
In the decision-making of multi-area ATC (Available Transfer Capacity) in electricity market environment, the existing resources of transmission network should be optimally dispatched and coordinately employed on the premise that the secure system operation is maintained and risk associated is controllable. The non-sequential Monte Carlo simulation is used to determine the ATC probability density distribution of specified areas under the influence of several uncertainty factors, based on which, a coordinated probabilistic optimal decision-making model with the maximal risk benefit as its objective is developed for multi-area ATC. The NSGA-II is applied to calculate the ATC of each area, which considers the risk cost caused by relevant uncertainty factors and the synchronous coordination among areas. The essential characteristics of the developed model and the employed algorithm are illustrated by the example of IEEE 118-bus test system. Simulative result shows that, the risk of multi-area ATC decision-making is influenced by the uncertainties in power system operation and the relative importance degrees of different areas.
Resumo:
Topic modeling has been widely utilized in the fields of information retrieval, text mining, text classification etc. Most existing statistical topic modeling methods such as LDA and pLSA generate a term based representation to represent a topic by selecting single words from multinomial word distribution over this topic. There are two main shortcomings: firstly, popular or common words occur very often across different topics that bring ambiguity to understand topics; secondly, single words lack coherent semantic meaning to accurately represent topics. In order to overcome these problems, in this paper, we propose a two-stage model that combines text mining and pattern mining with statistical modeling to generate more discriminative and semantic rich topic representations. Experiments show that the optimized topic representations generated by the proposed methods outperform the typical statistical topic modeling method LDA in terms of accuracy and certainty.
Resumo:
Objective: To test the impact of oral health education provided to pregnant mothers on subsequent practices within the infant’s family. Research design: A quasi-experimental intervention trial comparing the effectiveness of ‘usual care’ to one, or both, of two oral health education resources: a ‘sample bag’ of information and oral health care products; and/or a nine-minute “Healthy Teeth for Life” video on postnatal oral health issues. Participants: Women attending the midwife clinic at approximately 30 weeks gestation were recruited (n=611) in a public hospital providing free maternity services. Results and Conclusions: Four months after the birth of their infant, relative to the usual care condition, each of the oral health education interventions had independent or combined positive impacts on mother’s knowledge of oral health practices. However young, single, health care card-holder or unemployed mothers were less likely to apply healthy behaviours or to improve knowledge of healthy choices, as a result of these interventions. The video intervention provided the strongest and most consistent positive impact on mothers’ general and infant oral health knowledge. While mothers indicated that the later stage of pregnancy was a good time to receive oral health education, many suggested that this should also be provided after birth at a time when teeth were a priority issue, such as when “baby teeth” start to erupt.
Resumo:
In a recent paper, Gordon, Muratov, and Shvartsman studied a partial differential equation (PDE) model describing radially symmetric diffusion and degradation in two and three dimensions. They paid particular attention to the local accumulation time (LAT), also known in the literature as the mean action time, which is a spatially dependent timescale that can be used to provide an estimate of the time required for the transient solution to effectively reach steady state. They presented exact results for three-dimensional applications and gave approximate results for the two-dimensional analogue. Here we make two generalizations of Gordon, Muratov, and Shvartsman’s work: (i) we present an exact expression for the LAT in any dimension and (ii) we present an exact expression for the variance of the distribution. The variance provides useful information regarding the spread about the mean that is not captured by the LAT. We conclude by describing further extensions of the model that were not considered by Gordon,Muratov, and Shvartsman. We have found that exact expressions for the LAT can also be derived for these important extensions...
Resumo:
The determinants and key mechanisms of cancer cell osteotropism have not been identified, mainly due to the lack of reproducible animal models representing the biological, genetic and clinical features seen in humans. An ideal model should be capable of recapitulating as many steps of the metastatic cascade as possible, thus facilitating the development of prognostic markers and novel therapeutic strategies. Most animal models of bone metastasis still have to be derived experimentally as most syngeneic and transgeneic approaches do not provide a robust skeletal phenotype and do not recapitulate the biological processes seen in humans. The xenotransplantation of human cancer cells or tumour tissue into immunocompromised murine hosts provides the possibility to simulate early and late stages of the human disease. Human bone or tissue-engineered human bone constructs can be implanted into the animal to recapitulate more subtle, species-specific aspects of the mutual interaction between human cancer cells and the human bone microenvironment. Moreover, the replication of the entire "organ" bone makes it possible to analyse the interaction between cancer cells and the haematopoietic niche and to confer at least a partial human immunity to the murine host. This process of humanisation is facilitated by novel immunocompromised mouse strains that allow a high engraftment rate of human cells or tissue. These humanised xenograft models provide an important research tool to study human biological processes of bone metastasis.
Resumo:
Radio Frequency Identification is a wireless identification method that utilizes the reception of electromagnetic radio waves. This research has proposed a novel model to allow for an in-depth security analysis of current protocols and developed new flexible protocols that can be adapted to offer either stronger security or better efficiency.