932 resultados para relative spectrum distribution (RSD)
Resumo:
During food drying, many other changes occur simultaneously, resulting in an improved overall quality. Among the quality attributes, the structure and its corresponding color influence directly or indirectly other properties of food. In addition, these quality attributes are affected by process conditions, material components and the raw structure of the foodstuff. In this work, the temperature distribution within food materials during microwave drying has been taken into consideration to observe its role in color modification. In order to determine the temperature distribution of microwave-dried food (apple), a thermal imaging camera has been used. The image acquired from the digital camera has been analysed using image J software in order to get the color change of fresh and dried apple. The results show that temperature distribution plays an important role in determining the quality of the food. The thermal imaging camera was deployed to observe the temperature distribution within food materials during drying. It is clearly observed from the higher value of (ERGB =102) and the uneven color change that uneven temperature distribution can influence customer perceptions of the quality of dried food. Simulation of a mathematical model of temperature distribution during microwave drying can make it possible to predict the colour and texture of the microwaved food.
Resumo:
High-speed broadband internet access is widely recognised as a catalyst to social and economic development. However, the provision of broadband Internet services with the existing solutions to rural population, scattered over an extensive geographical area, remains both an economic and technical challenge. As a feasible solution, the Commonwealth Scientific and Industrial Research Organization (CSIRO) proposed a highly spectrally efficient, innovative and cost-effective fixed wireless broadband access technology, which uses analogue TV frequency spectrum and Multi-User MIMO (MUMIMO) technology with Orthogonal-Frequency-Division-Multiplexing (OFDM). MIMO systems have emerged as a promising solution for the increasing demand of higher data rates, better quality of service, and higher network capacity. However, the performance of MIMO systems can be significantly affected by different types of propagation environments e.g., indoor, outdoor urban, or outdoor rural and operating frequencies. For instance, large spectral efficiencies associated with MIMO systems, which assume a rich scattering environment in urban environments, may not be valid for all propagation environments, such as outdoor rural environments, due to the presence of less scatterer densities. Since this is the first time a MU-MIMO-OFDM fixed broadband wireless access solution is deployed in a rural environment, questions from both theoretical and practical standpoints arise; For example, what capacity gains are available for the proposed solution under realistic rural propagation conditions?. Currently, no comprehensive channel measurement and capacity analysis results are available for MU-MIMO-OFDM fixed broadband wireless access systems which employ large scale multiple antennas at the Access Point (AP) and analogue TV frequency spectrum in rural environments. Moreover, according to the literature, no deterministic MU-MIMO channel models exist that define rural wireless channels by accounting for terrain effects. This thesis fills the aforementioned knowledge gaps with channel measurements, channel modeling and comprehensive capacity analysis for MU-MIMO-OFDM fixed wireless broadband access systems in rural environments. For the first time, channel measurements were conducted in a rural farmland near Smithton, Tasmania using CSIRO's broadband wireless access solution. A novel deterministic MU-MIMO-OFDM channel model, which can be used for accurate performance prediction of rural MUMIMO channels with dominant Line-of-Sight (LoS) paths, was developed under this research. Results show that the proposed solution can achieve 43.7 bits/s/Hz at a Signal-to- Noise Ratio (SNR) of 20 dB in rural environments. Based on channel measurement results, this thesis verifies that the deterministic channel model accurately predicts channel capacity in rural environments with a Root Mean Square (RMS) error of 0.18 bits/s/Hz. Moreover, this study presents a comprehensive capacity analysis of rural MU-MIMOOFDM channels using experimental, simulated and theoretical models. Based on the validated deterministic model, further investigations on channel capacity and the eects of capacity variation, with different user distribution angles (θ) around the AP, were analysed. For instance, when SNR = 20dB, the capacity increases from 15.5 bits/s/Hz to 43.7 bits/s/Hz as θ increases from 10° to 360°. Strategies to mitigate these capacity degradation effects are also presented by employing a suitable user grouping method. Outcomes of this thesis have already been used by CSIRO scientists to determine optimum user distribution angles around the AP, and are of great significance for researchers and MU-MUMO-OFDM system developers to understand the advantages and potential capacity gains of MU-MIMO systems in rural environments. Also, results of this study are useful to further improve the performance of MU-MIMO-OFDM systems in rural environments. Ultimately, this knowledge contribution will be useful in delivering efficient, cost-effective high-speed wireless broadband systems that are tailor-made for rural environments, thus, improving the quality of life and economic prosperity of rural populations.
Resumo:
The design of concurrent software systems, in particular process-aware information systems, involves behavioral modeling at various stages. Recently, approaches to behavioral analysis of such systems have been based on declarative abstractions defined as sets of behavioral relations. However, these relations are typically defined in an ad-hoc manner. In this paper, we address the lack of a systematic exploration of the fundamental relations that can be used to capture the behavior of concurrent systems, i.e., co-occurrence, conflict, causality, and concurrency. Besides the definition of the spectrum of behavioral relations, which we refer to as the 4C spectrum, we also show that our relations give rise to implication lattices. We further provide operationalizations of the proposed relations, starting by proposing techniques for computing relations in unlabeled systems, which are then lifted to become applicable in the context of labeled systems, i.e., systems in which state transitions have semantic annotations. Finally, we report on experimental results on efficiency of the proposed computations.
Resumo:
This paper introduces a parallel implementation of an agent-based model applied to electricity distribution grids. A fine-grained shared memory parallel implementation is presented, detailing the way the agents are grouped and executed on a multi-threaded machine, as well as the way the model is built (in a composable manner) which is an aid to the parallelisation. Current results show a medium level speedup of 2.6, but improvements are expected by incor-porating newer distributed or parallel ABM schedulers into this implementa-tion. While domain-specific, this parallel algorithm can be applied to similarly structured ABMs (directed acyclic graphs).
Resumo:
This thesis is an innovative study for organic synthesis using supported gold nanoparticles as photocatalysts under visible light irradiation. It especially examines a novel green process for efficient hydroamination of alkynes with amines. The investigation of other traditional reduction and oxidation reactions also adds significantly to the knowledge of gold nanoparticles and titania nanofibres as photocatalysts for organic synthesis.
Resumo:
Our results demonstrate that photorefractive residual amplitude modulation (RAM) noise in electro-optic modulators (EOMs) can be reduced by modifying the incident beam intensity distribution. Here we report an order of magnitude reduction in RAM when beams with uniform intensity (flat-top) profiles, generated with an LCOS-SLM, are used instead of the usual fundamental Gaussian mode (TEM00). RAM arises from the photorefractive amplified scatter noise off the defects and impurities within the crystal. A reduction in RAM is observed with increasing intensity uniformity (flatness), which is attributed to a reduction in space charge field on the beam axis. The level of RAM reduction that can be achieved is physically limited by clipping at EOM apertures, with the observed results agreeing well with a simple model. These results are particularly important in applications where the reduction of residual amplitude modulation to 10^-6 is essential.
Resumo:
Background Heat-related impacts may have greater public health implications as climate change continues. It is important to appropriately characterize the relationship between heatwave and health outcomes. However, it is unclear whether a case-crossover design can be effectively used to assess the event- or episode-related health effects. This study examined the association between exposure to heatwaves and mortality and emergency hospital admissions (EHAs) from non-external causes in Brisbane, Australia, using both case-crossover and time series analyses approaches. Methods Poisson generalised additive model (GAM) and time-stratified case-crossover analyses were used to assess the short-term impact of heatwaves on mortality and EHAs. Heatwaves exhibited a significant impact on mortality and EHAs after adjusting for air pollution, day of the week, and season. Results For time-stratified case-crossover analysis, odds ratios of mortality and EHAs during heatwaves were 1.62 (95% confidence interval (CI): 1.36–1.94) and 1.22 (95% CI: 1.14–1.30) at lag 1, respectively. Time series GAM models gave similar results. Relative risks of mortality and EHAs ranged from 1.72 (95% CI: 1.40–2.11) to 1.81 (95% CI: 1.56–2.10) and from 1.14 (95% CI: 1.06–1.23) to 1.28 (95% CI: 1.21–1.36) at lag 1, respectively. The risk estimates gradually attenuated after the lag of one day for both case-crossover and time series analyses. Conclusions The risk estimates from both case-crossover and time series models were consistent and comparable. This finding may have implications for future research on the assessment of event- or episode-related (e.g., heatwave) health effects.
Resumo:
Background Asthma is a serious global health problem. However, few studies have investigated the relationship between cold spells and pediatric outpatient visits for asthma. Objective To examine the association between cold spells and pediatric outpatient visits for asthma in Shanghai, China. Methods We collected daily data on pediatric outpatient visits for asthma, mean temperature, relative humidity, and ozone from Shanghai between 1 January 2007 and 31 December 2009. We defined cold spells as four or more consecutive days with temperature below the 5th percentile of temperature during 2007–2009. We used a Poisson regression model to examine the impact of temperature on pediatric outpatient visits for asthma in cold seasons during 2007 and 2009. We examined the effect of cold spells on asthma compared with non-cold spell days. Results There was a significant relationship between cold temperatures and pediatric outpatient visits for asthma. The cold effects on children's asthma were observed at different lags. The lower the temperatures, the higher the risk for asthma attacks among children. Conclusion Cold temperatures, particularly cold spells, significantly increase the risk of pediatric outpatient visits for asthma. The findings suggest that asthma children need to be better protected from cold effects in winter.
Resumo:
Background The association between temperature and mortality has been examined mainly in North America and Europe. However, less evidence is available in developing countries, especially in Thailand. In this study, we examined the relationship between temperature and mortality in Chiang Mai city, Thailand, during 1999–2008. Method A time series model was used to examine the effects of temperature on cause-specific mortality (non-external, cardiopulmonary, cardiovascular, and respiratory) and age-specific non-external mortality (<=64, 65–74, 75–84, and > =85 years), while controlling for relative humidity, air pollution, day of the week, season and long-term trend. We used a distributed lag non-linear model to examine the delayed effects of temperature on mortality up to 21 days. Results We found non-linear effects of temperature on all mortality types and age groups. Both hot and cold temperatures resulted in immediate increase in all mortality types and age groups. Generally, the hot effects on all mortality types and age groups were short-term, while the cold effects lasted longer. The relative risk of non-external mortality associated with cold temperature (19.35°C, 1st percentile of temperature) relative to 24.7°C (25th percentile of temperature) was 1.29 (95% confidence interval (CI): 1.16, 1.44) for lags 0–21. The relative risk of non-external mortality associated with high temperature (31.7°C, 99th percentile of temperature) relative to 28°C (75th percentile of temperature) was 1.11 (95% CI: 1.00, 1.24) for lags 0–21. Conclusion This study indicates that exposure to both hot and cold temperatures were related to increased mortality. Both cold and hot effects occurred immediately but cold effects lasted longer than hot effects. This study provides useful data for policy makers to better prepare local responses to manage the impact of hot and cold temperatures on population health.
Resumo:
Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.
Resumo:
The prime objective of drying is to enhance shelf life of perishable food materials. As the process is very energy intensive in nature, researchers are trying to minimise energy consumption in the drying process. In order to determine the exact amount of energy needed for drying a food product, understanding the physics of moisture distribution and bond strength of water within the food material is essential. In order understand the critical moisture content, moisture distribution and water bond strength in food material, Thermogravimetric analysis (TGA) can be properly utilised. This work has been conducted to investigate moisture distribution and water bond strength in selected food materials; apple, banana and potato. It was found that moisture distribution and water bond strength influence moisture migration from the food materials. In addition, proportion of different types of water (bound, free, surface water) has been simply identified using TGA. This study provides a better understanding of water contents and its role in drying rate and energy consumption.
Resumo:
Objective Do employees care about their relative (economic) position in comparison to their co-workers in an organization? And if so, does it raise or lower their performance? While the topic is widely discussed in the literature, behavioral evidence on these important questions is relatively rare. Methods This article explores the pay-performance relationship using a sports data set. The strength of analyzing such data is that sports tournaments take place in a very controlled environment that helps to isolate a relative income effect. Results Using two large unique data sets that cover 26 seasons in basketball and eight seasons in soccer (Bundesliga), we find considerable support for the idea that a relative income disadvantage is correlated with a decrease in individual performance. In addition, there does not seem to be any tolerance for income disparity based on the hope that such differences may signal that better times are ahead. Conclusions This suggests the need to consider the impact of the relative income position when designing pay-for-performance mechanisms within firms and teams.
Resumo:
Background Adenocarcinoma of the esophagogastric junction (AEG) as described by Siewert et al. is classified as one entity in the latest (7th Edition) American Joint Cancer Committee/International Union Against Cancer (AJCC/UICC) manual, compared with the previous mix of esophageal and gastric staging systems. The origin of AEG tumors, esophageal or gastric, and their biology remain controversial, particularly for AEG type II (cardia) tumors. Methods We adapted a large prospective database (n = 520: 180 type I, 182 type II, 158 type III) to compare AEG tumors under the new TNM system Pathological variables associated with prognosis were compared (pT, pN, stage, differentiation, R status, lymphovascular invasion, perineural involvement, number of positive nodes, percent of positive nodes, and tumor length), as well as overall survival. Results Compared with AEG type I tumors, type II and type III tumors had significantly (p\0.05) more advanced pN stages, greater number and percentage of positive nodes, poorer differentiation, more radial margin involvement, and more perineural invasion. In AEG type I, 14/180 patients (8%) had[6 involved nodes (pN3), compared with 16 and 30% of patients classified type II and III, respectively. Median survival was significantly (p = 0.03) improved for type I patients (38 months) compared with those with tumors classified as type II (28 months) and type III (24 months). In multivariate analysis node positivity and pN staging but not AEG site had an impact on survival. Conclusions In this series AEG type I is associated with more favorable pathologic features and improved outcomes compared with AEG type II and III. This may reflect earlier diagnosis, but an alternative possibility, that type I may be a unique paradigm with more favorable biology, requires further study. © Société Internationale de Chirurgie 2010.
Resumo:
Food prices and food affordability are important determinants of food choices, obesity and non-communicable diseases. As governments around the world consider policies to promote the consumption of healthier foods, data on the relative price and affordability of foods, with a particular focus on the difference between ‘less healthy’ and ‘healthy’ foods and diets, are urgently needed. This paper briefly reviews past and current approaches to monitoring food prices, and identifies key issues affecting the development of practical tools and methods for food price data collection, analysis and reporting. A step-wise monitoring framework, including measurement indicators, is proposed. ‘Minimal’ data collection will assess the differential price of ‘healthy’ and ‘less healthy’ foods; ‘expanded’ monitoring will assess the differential price of ‘healthy’ and ‘less healthy’ diets; and the ‘optimal’ approach will also monitor food affordability, by taking into account household income. The monitoring of the price and affordability of ‘healthy’ and ‘less healthy’ foods and diets globally will provide robust data and benchmarks to inform economic and fiscal policy responses. Given the range of methodological, cultural and logistical challenges in this area, it is imperative that all aspects of the proposed monitoring framework are tested rigorously before implementation.