977 resultados para relative osmotic water volume at incipient plasmolysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subantarctic mode water (SAMW) has been shown to be a good indicator of anthropogenic climate change in coupled climate models. SAMW in a coupled climate model and the response of modeled SAMW to increasing CO2 are examined in detail. How SAMW adjusts from climatological values toward a new equilibrium in the coupled model, with different climatological temperature and salinity properties, is shown. The combined formation rate of SAMW and Antarctic intermediate water is calculated as approximately 18 Sv (Sv ≡ 106 m3 s−1) in the Indian sector of the Southern Ocean, slightly lower than climatological values would suggest. When forced with increasing CO2, SAMW is produced at a similar rate but at lower densities. This result suggests that the rate of heat uptake in this part of the ocean will be unchanged by anthropogenic forcing. The important signal in the response of SAMW is the shift to colder and fresher values on isopycnals that is believed to be related to changes in thermodynamic surface forcing. It is shown that, given uniform forcing, SAMW is expected to enhance the signal relative to other water masses. Independent increases in surface heating or freshwater forcing can produce changes similar to those observed, but the two different types of forcing are distinguishable using separate forcing experiments, hodographs, and passive anomaly tracers. The changes in SAMW forced by increasing CO2 are dominated by surface heating, but changes to freshwater fluxes are also important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present helium scattering measurements of a water ad-layer grown on a O(2 1)/Ru(0001) surface. The adsorbed water layer results in a well ordered helium diffraction pattern with systematic extinctions of diffraction spots due to glide line symmetries. The data reflects a well-defined surface structure that maintains proton order even at surprisingly high temperatures of 140 K. The diffraction data we measure is consistent with a structure recently derived from STM measurements performed at 6 K. Comparison with recent DFT calculation is in partial agreement, suggesting that these calculations might be underestimating the contribution of relative water molecule orientations to the binding energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was conducted in the Department of Plant Breeding and Genetics,Sindh Agriculture University, Tandojam, Pakistan during the year 2009. Sixteen spring wheat cultivars (Triticum aestivum L.) were screened under osmotic stress with three treatments i.e. control-no PEG (polyethylene glycol), 15 percent and 25 percent PEG-6000 solution. The analysis of variance indicated significant differences among treatments for all seedling traits except seed germination percentage. Varieties also differed significantly in germination percentage, coleoptile length, shoot root length, shoot weight, root/shoot ratio and seed vigour index. However, shoot and root weights were non-significant. Significant interactions revealed that cultivars responded variably to osmotic stress treatments; hence provided better opportunity to select drought tolerant cultivars at seedling growth stages. The relative decrease over averages due to osmotic stress was 0.8 percent in seed germination, 53 percent in coleoptile length 62.9 percent in shoot length, 74.4 percent in root length, 50.6 percent in shoot weight, 45.1 percent in root weight, 30.2 percent in root/shoot ratio and 68.5 percent in seed vigour index. However, relative decrease of individual variety for various seedling traits could be more meaningful which indicated that cultivar TD-1 showed no reduction in coleoptile length, while minimum decline was noted in Anmol. For shoot length, cultivar Sarsabz expressed minimum reduction followed by Anmol. However, cultivars Anmol, Moomal, Inqalab-91, and Pavan gave almost equally lower reductions for root length suggesting their higher stress tolerance. In other words, cultivars Anmol, Moomal, Inqalab-91, Sarsabz, TD-1, ZA-77 and Pavan had relatively longer coleoptiles, shoots and roots, and were regarded as drought tolerant. Correlation coefficients among seedlings traits were significant and positive for all traits except germination percentage which had no significant correlation with any of other trait. The results indicated that increase in one trait may cause simultaneous increase in other traits; hence selection for any of these seedling attributes will lead to develop drought tolerant wheat cultivars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct outdoor air cooling contributes a lot not only to the improvement of the indoor air quality but also to the energy saving. Its full use will reduce the water chiller’s running time especially in some stores where cooling load keeps much higher and longer than that in other buildings. A novel air-conditioning system named Combined Variable Air Volume system (CVAV), combining a normal AHU with a separate outdoor air supply system, was proposed firstly by the authors. The most attractive feature of the system is its full utilization of cooling capacity and freshness of outdoor air in the transition period of the year round. On the basis of the obtain of the dynamic cooling loads of the typical shopping malls in different four cities located in cold climates in China with the aid of DOE-2, the possibility of increasing the amount of outdoor air volume of CVAV system in the transition period instead of operating the water chillers was confirmed. Moreover, a new concept, Direct Outdoor Air Cooling Efficiency (DOACE), was defined as the ratio of cooling capacity of outdoor air to the water chiller, indicating the degree of outdoor air’s utilization. And the DOACE of the CVAV was calculated and compared with that of conventional all-air constant volume air-conditioning systems, the results showed that CVAV bear much more energy saving potential with the 10%~19% higher DOACE and it is a kind of energy efficient systems and can improve the indoor air quality as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Net- work (AERONET) routinely monitor clouds using zenith ra- diances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m−2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m−2 at the ARM Oklahoma site during 2007– 2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22 % are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11 % with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative abundances of DNA of Mycosphaerella graminicola and Phaeosphaeria nodorum in archived wheat samples are closely correlated with UK anthropogenic emissions of oxidized sulphur over the last 160 years. To test whether this could be a causal relationship, possible modes of action of sulphur on the two fungi were examined. Mycelial growth of the two fungi in solutions of sulphurous acid was similar. Sulphurous acid at pH 4 reduced percentage germination of P. nodorum conidia more strongly than M. graminicola conidia. In spray inoculations of wheat cv. Squarehead’s Master, Cappelle Desprez and Riband with water or sulphurous acid (pH 4), the ratio of leaves infected by P. nodorum to leaves infected by M. graminicola was increased by factors of 2.5, 2.1 and 0.6, respectively at pH 4. The same three cultivars of wheat were grown in sand and vermiculite and fertilized with nutrient solution containing 2.5 or 0.5 mM sulphate. Both pathogens infected less frequently at 2.5 mM sulphate, by a factor of about 2. The severity of infection by M. graminicola was reduced on all three cultivars by a factor of about 4-5 at 2.5mM sulphate, but severity of P. nodorum was reduced only by a factor of about 2. Both elevated free sulphate concentrations in soil and sulphite in rainwater could therefore increase the prevalence of P. nodorum relative to M. graminicola, which is consistent with the historical changes in abundance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper will introduce the Baltex research programme and summarize associated numerical modelling work which has been undertaken during the last five years. The research has broadly managed to clarify the main mechanisms determining the water and energy cycle in the Baltic region, such as the strong dependence upon the large scale atmospheric circulation. It has further been shown that the Baltic Sea has a positive water balance, albeit with large interannual variations. The focus on the modelling studies has been the use of limited area models at ultra-high resolution driven by boundary conditions from global models or from reanalysis data sets. The programme has further initiated a comprehensive integration of atmospheric, land surface and hydrological modelling incorporating snow, sea ice and special lake models. Other aspects of the programme include process studies such as the role of deep convection, air sea interaction and the handling of land surface moisture. Studies have also been undertaken to investigate synoptic and sub-synoptic events over the Baltic region, thus exploring the role of transient weather systems for the hydrological cycle. A special aspect has been the strong interests and commitments of the meteorological and hydrological services because of the potentially large societal interests of operational applications of the research. As a result of this interests special attention has been put on data-assimilation aspects and the use of new types of data such as SSM/I, GPS-measurements and digital radar. A series of high resolution data sets are being produced. One of those, a 1/6 degree daily precipitation climatology for the years 1996–1999, is such a unique contribution. The specific research achievements to be presented in this volume of Meteorology and Atmospheric Physics is the result of a cooperative venture between 11 European research groups supported under the EU-Framework programmes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soluble reactive phosphorus (SRP) plays a key role in eutrophication, a global problem decreasing habitat quality and in-stream biodiversity. Mitigation strategies are required to prevent SRP fluxes from exceeding critical levels, and must be robust in the face of potential changes in climate, land use and a myriad of other influences. To establish the longevity of these strategies it is therefore crucial to consider the sensitivity of catchments to multiple future stressors. This study evaluates how the water quality and hydrology of a major river system in the UK (the River Thames) respond to alterations in climate, land use and water resource allocations, and investigates how these changes impact the relative performance of management strategies over an 80-year period. In the River Thames, the relative contributions of SRP from diffuse and point sources vary seasonally. Diffuse sources of SRP from agriculture dominate during periods of high runoff, and point sources during low flow periods. SRP concentrations rose under any future scenario which either increased a) surface runoff or b) the area of cultivated land. Under these conditions, SRP was sourced from agriculture, and the most effective single mitigation measures were those which addressed diffuse SRP sources. Conversely, where future scenarios reduced flow e.g. during winters of reservoir construction, the significance of point source inputs increased, and mitigation measures addressing these issues became more effective. In catchments with multiple point and diffuse sources of SRP, an all-encompassing effective mitigation approach is difficult to achieve with a single strategy. In order to attain maximum efficiency, multiple strategies might therefore be employed at different times and locations, to target the variable nature of dominant SRP sources and pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of coupled atmosphere–ocean–ice aquaplanet experiments is described in which topological constraints on ocean circulation are introduced to study the role of ocean circulation on the mean climate of the coupled system. It is imagined that the earth is completely covered by an ocean of uniform depth except for the presence or absence of narrow barriers that extend from the bottom of the ocean to the sea surface. The following four configurations are described: Aqua (no land), Ridge (one barrier extends from pole to pole), Drake (one barrier extends from the North Pole to 35°S), and DDrake (two such barriers are set 90° apart and join at the North Pole, separating the ocean into a large basin and a small basin, connected to the south). On moving from Aqua to Ridge to Drake to DDrake, the energy transports in the equilibrium solutions become increasingly “realistic,” culminating in DDrake, which has an uncanny resemblance to the present climate. Remarkably, the zonal-average climates of Drake and DDrake are strikingly similar, exhibiting almost identical heat and freshwater transports, and meridional overturning circulations. However, Drake and DDrake differ dramatically in their regional climates. The small and large basins of DDrake exhibit distinctive Atlantic-like and Pacific-like characteristics, respectively: the small basin is warmer, saltier, and denser at the surface than the large basin, and is the main site of deep water formation with a deep overturning circulation and strong northward ocean heat transport. A sensitivity experiment with DDrake demonstrates that the salinity contrast between the two basins, and hence the localization of deep convection, results from a deficit of precipitation, rather than an excess of evaporation, over the small basin. It is argued that the width of the small basin relative to the zonal fetch of atmospheric precipitation is the key to understanding this salinity contrast. Finally, it is argued that many gross features of the present climate are consequences of two topological asymmetries that have profound effects on ocean circulation: a meridional asymmetry (circumpolar flow in the Southern Hemisphere; blocked flow in the Northern Hemisphere) and a zonal asymmetry (a small basin and a large basin).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models for water transfer in the crop-soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop-soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop-soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24%, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16%. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the SPARC Data Initiative, the first comprehensive assessment of the quality of 13 water vapor products from 11 limb-viewing satellite instruments (LIMS, SAGE II, UARS-MLS, HALOE, POAM III, SMR, SAGE III, MIPAS, SCIAMACHY, ACE-FTS, and Aura-MLS) obtained within the time period 1978-2010 has been performed. Each instrument's water vapor profile measurements were compiled into monthly zonal mean time series on a common latitude-pressure grid. These time series serve as basis for the "climatological" validation approach used within the project. The evaluations include comparisons of monthly or annual zonal mean cross sections and seasonal cycles in the tropical and extratropical upper troposphere and lower stratosphere averaged over one or more years, comparisons of interannual variability, and a study of the time evolution of physical features in water vapor such as the tropical tape recorder and polar vortex dehydration. Our knowledge of the atmospheric mean state in water vapor is best in the lower and middle stratosphere of the tropics and midlatitudes, with a relative uncertainty of. 2-6% (as quantified by the standard deviation of the instruments' multiannual means). The uncertainty increases toward the polar regions (+/- 10-15%), the mesosphere (+/- 15%), and the upper troposphere/lower stratosphere below 100 hPa (+/- 30-50%), where sampling issues add uncertainty due to large gradients and high natural variability in water vapor. The minimum found in multiannual (1998-2008) mean water vapor in the tropical lower stratosphere is 3.5 ppmv (+/- 14%), with slightly larger uncertainties for monthly mean values. The frequently used HALOE water vapor data set shows consistently lower values than most other data sets throughout the atmosphere, with increasing deviations from the multi-instrument mean below 100 hPa in both the tropics and extratropics. The knowledge gained from these comparisons and regarding the quality of the individual data sets in different regions of the atmosphere will help to improve model-measurement comparisons (e.g., for diagnostics such as the tropical tape recorder or seasonal cycles), data merging activities, and studies of climate variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the potential contribution of observed changes in lower stratospheric water vapour to stratospheric temperature variations over the past three decades using a comprehensive global climate model (GCM). Three case studies are considered. In the first, the net increase in stratospheric water vapour (SWV) from 1980–2010 (derived from the Boulder frost-point hygrometer record using the gross assumption that this is globally representative) is estimated to have cooled the lower stratosphere by up to ∼0.2 K decade−1 in the global and annual mean; this is ∼40% of the observed cooling trend over this period. In the Arctic winter stratosphere there is a dynamical response to the increase in SWV, with enhanced polar cooling of 0.6 K decade−1 at 50 hPa and warming of 0.5 K decade−1 at 1 hPa. In the second case study, the observed decrease in tropical lower stratospheric water vapour after the year 2000 (imposed in the GCM as a simplified representation of the observed changes derived from satellite data) is estimated to have caused a relative increase in tropical lower stratospheric temperatures by ∼0.3 K at 50 hPa. In the third case study, the wintertime dehydration in the Antarctic stratospheric polar vortex (again using a simplified representation of the changes seen in a satellite dataset) is estimated to cause a relative warming of the Southern Hemisphere polar stratosphere by up to 1 K at 100 hPa from July–October. This is accompanied by a weakening of the westerly winds on the poleward flank of the stratospheric jet by up to 1.5 m s−1 in the GCM. The results show that, if the measurements are representative of global variations, SWV should be considered as important a driver of transient and long-term variations in lower stratospheric temperature over the past 30 years as increases in long-lived greenhouse gases and stratospheric ozone depletion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent laboratory measurements show that absorption by the water vapour continuum in near-infrared windows may be about an order of magnitude higher than assumed in many radiation codes. The radiative impact of the continuum at visible and near-infrared wavelengths is examined for the present day and for a possible future warmer climate (with a global-mean total column water increase of 33%). The calculations use a continuum model frequently used in climate models (‘CKD’) and a continuum model where absorption is enhanced at wavelengths greater than 1 µm based on recent measurements (‘CAVIAR’). The continuum predominantly changes the partitioning between solar radiation absorbed by the surface and the atmosphere; changes in top-of-atmosphere net irradiances are smaller. The global-mean clear-sky atmospheric absorption is enhanced by 1.5 W m−2 (about 2%) and 2.8 W m−2 (about 3.5%) for CKD and CAVIAR respectively, relative to a hypothetical no-continuum case, with all-sky enhancements about 80% of these values. The continuum is, in relative terms, more important for radiation budget changes between the present day and a possible future climate. Relative to the no-continuum case, the increase in global-mean clear-sky absorption is 8% higher using CKD and almost 20% higher using CAVIAR; all-sky enhancements are about half these values. The effect of the continuum is estimated for the solar component of the water vapour feedback, the reduction in downward surface irradiance and precipitation change in a warmer world. For CKD and CAVIAR respectively, and relative to the no-continuum case, the solar component of the water vapour feedback is enhanced by about 4 and 9%, the change in clear-sky downward surface irradiance is 7 and 18% more negative, and the global-mean precipitation response decreases by 1 and 4%. There is a continued need for improved continuum measurements, especially at atmospheric temperatures and at wavelengths below 2 µm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g−1) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g−1) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers.