862 resultados para radioactive ion beam
Resumo:
The mechanism and the energy profile of the gas-phase reaction that mimics esterification under acidic conditions have been investigated at different levels of theory. These reactions are known to proceed with rate constants close to the collision limit in the gas-phase and questions have been raised as to whether the typical addition-elimination mechanism via a tetrahedral intermediate can explain the ease of these processes. Because these reactions are common to many organic and biochemical processes it is important to understand the intrinsic reactivity of these systems. Our calculations at different levels of theory reveal that a stepwise mechanism via a tetrahedral species is characterized by energy barriers that are inconsistent with the experimental results. For the thermoneutral exchange between protonated acetic acid and water and the exothermic reaction of protonated acetic acid and methanol our calculations show that these reactions proceed initially by a proton shuttle between the carbonyl oxygen and the hydroxy oxygen of acetic acid mediated by water, or methanol, followed by displacement at the acylium ion center. These findings suggest that the reactions in the gas-phase should be viewed as an acylium ion transfer reaction. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1596-1606, 2011
Resumo:
In this work, a series of 10 structural procaine analogs have been synthesized in order to investigate the structural features affecting the stability of ion pair formation and its influence on the lipophilicity of ionizable compounds. The structural variation within this series was focused on the terminal nitrogen substituents and on the intermediate chain linkage nature. The hydrophobic parameters log P(n) and log P(i) (partition coefficient of the neutral and ionic species, respectively), as well as the ionization constants pK(a) and pK(a)(oct), were obtained from log D-pH profiles measured at pH values ranging from 2 to 12. The difference between log P(i) and log P(n) values (i.e. difflog P) of each prepared compound was considered a measure of the stability of ion pair formation. In this set, the difflog P values varied nearly over one log unit, ranging from -2.40 to -3.37. It has been observed that the presence of hydrogen bonding groups (especially donor) and low steric hindrance around the terminal amine ionizable group increases the relative lipophilicity of the ionic species as compared to the corresponding neutral species. These results were interpreted as due to the increased stability of ion pairs of the compounds bearing these structural features. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The synthesis, structural investigation, and photophysical properties of the complex [Tb(TTA)(2)(NO(3)) (TPPO)(2)] are reported. Unlike the analog tris-diketonate complex [Tb(TTA)(3)(TPPO)(2)], the new complex presents abnormally high luminescence intensity centered on the terbium ion. Our results clearly suggest a higher energy transfer efficiency from the TEA antenna ligand to the Tb(III) ion in the bis-diketonate complex compared with that in the tris-diketonate complex. A mechanism involving the increasing of triplet state energy when one TTA ligand is replaced by the NO(3)(-) group in the first coordination sphere is suggested and experimentally investigated to explain the anomalous luminescence properties of the new complex [Tb(TTA)(2)(NO(3))(TPPO)(2)]. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the automation of a fully electrochemical system for preconcentration, cleanup, separation and detection, comprising the hyphenation of a thin layer electrochemical flow cell with CE coupled with contactless conductivity detection (CE-C(4)D). Traces of heavy metal ions were extracted from the pulsed-flowing sample and accumulated on a glassy carbon working electrode by electroreduction for some minutes. Anodic stripping of the accumulated metals was synchronized with hydrodynamic injection into the capillary. The effect of the angle of the slant polished tip of the CE capillary and its orientation against the working electrode in the electrochemical preconcentration (EPC) flow cell and of the accumulation time were studied, aiming at maximum CE-C(4)D signal enhancement. After 6 min of EPC, enhancement factors close to 50 times were obtained for thallium, lead, cadmium and copper ions, and about 16 for zinc ions. Limits of detection below 25 nmol/L were estimated for all target analytes but zinc. A second separation dimension was added to the CE separation capabilities by staircase scanning of the potentiostatic deposition and/or stripping potentials of metal ions, as implemented with the EPC-CE-C(4)D flow system. A matrix exchange between the deposition and stripping steps, highly valuable for sample cleanup, can be straightforwardly programmed with the multi-pumping flow management system. The automated simultaneous determination of the traces of five accumulable heavy metals together with four non-accumulated alkaline and alkaline earth metals in a single run was demonstrated, to highlight the potentiality of the system.
Resumo:
MgO based refractory castables draw wide technological interest because they have the versatility and installation advantages of monolithic refractories with intrinsic MgO properties, such as high refractoriness and resistance to basic slag corrosion. Nevertheless, MgO easily reacts with water to produce Mg(OH)(2), which is followed by a large volumetric expansion, limiting its application in refractory castables. In order to develop solutions to minimize this effect, a better understanding of the main variables involved in this reaction is required. In this work, the influence of temperature, as well as the impact of the chemical equilibrium shifting (known as the common-ion effect), on MgO hydration was evaluated. Ionic conductivity measurements at different temperatures showed that the MgO hydration reaction is accelerated with increasing temperature. Additionally, different compounds were added to evaluate their influence on the reaction rate. Among them, CaCl(2) delayed the reaction, whereas KOH showed an opposite behavior. MgCl(2) and MgSO(4) presented similar results and two other distinct effects, reaction delay and acceleration, which depended on their concentration in the suspensions. The results were evaluated by considering the kinetics and the thermodynamics of the reaction, and the mechanical damages in the samples that was caused by the hydration reaction. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
We propose a coherent beam splitter for polarized heteronuclear molecules based on a stimulated Raman adiabatic passage scheme that uses a tripod linkage of electrotranslational molecular states. We show that for strongly polarized molecules the rotational dynamics imposes significantly larger Rabi frequencies than would otherwise be expected, but within this limitation, a full transfer of the molecules to two counterpropagating ground-state wave packets is possible.
Resumo:
Each section of this thesis will be subdivided into three parts encompassing all of the research in which I have been involved during the past three years. These will be referred to under the headings "Syntheses:' "Molecular Modeling," and "Cross-linking Efficiencies." Each of these subdivisions may have divisions within them when necessary in order to fully detail the research.