949 resultados para quaternary structure changes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider a model for rattling in single-stage gearbox systems with some backlash consisting of two wheels with a sinusoidal driving; the equations of motions are analytically integrated between two impacts of the gear teeth. Just after each impact, a mapping is used to obtain the dynamical variables. We have observed a rich dynamical behavior in such system, by varying its control parameters, and we focus on intermittent switching between laminar oscillations and chaotic bursting, as well as crises, which are sudden changes in the chaotic behavior. The corresponding transient basins in phase space are found to be riddled-like, with a highly interwoven fractal structure. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Depending on the composition, the mixture of surfactant, oil and water, may form supramolecular aggregates with different structures which can significantly influence the drug release. In this work several microemulsion (ME) systems containing soya phosphatidylcholine (SPC) and eumulgin HRE40 (TM) (EU) as surfactant, cholesterol (O) as oil phase, and ultra-pure water as an aqueous phase were studied. MEs with and without the antitumoral drug doxorubicin (DOX) were prepared. The microstructures of the systems were characterized by photon correlation spectroscopy, rheological behavior, polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). The results reveal that the diameter of the oil droplets was dependent on the surfactant (S) amount added to formulations. The apparent viscosity was dependent on the O/S ratio. High O/S ratio leads to the crystallization of cholesterol polymorphs phases which restricts the mobility of the DOX molecules into the ME structure. Droplets with short-range spatial correlation were formed from the ME with the low O/S ratio. The increase of the cholesterol fraction in the O/S mixture leads to the formation of ordered structures with lamellar arrangements. These different structural organizations directly influenced the drug release profiles. The in vitro release assay showed that the increase of the O/S ratio in the formulations inhibited the constant rate of DOX release. Since the DOX release ratio was directly dependent on the ratio of O/S following an exponential decay profile, this feature can be used to control the DOX release from the ME formulations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Organic-inorganic hybrids were prepared using ureapropyltriethoxysilane, methacryloxypropyltrimethoxysilane and acrylic acid modified zirconium(IV) n-propoxide precursors and were characterized by small angle X-ray scattering, X-ray diffraction and photoluminescence spectroscopy. The results indicate an effective interaction between the zirconium-based nanoparticles and the siliceous nanodomains that induces changes in the hybrids' emission features. Planar waveguides were obtained by spin-coating of the prepared sols on sodalime and silica substrates. Refractive index, thickness, number of propagating modes, and attenuation coefficient were measured at 543.5, 632.8 and 1550 nm by the prism coupling technique. The synergism between the two hybrid precursors resulted in monomode planar waveguides with low losses in the infrared ( from 0.6-1.1 dB cm(-1)) which also support a number of propagating modes in the visible ( losses from 0.4-1.5 dB cm(-1)). Channel waveguides were also obtained by UV photopatterning using amplitude or phase masks and propagating modes were observed at 1550 nm.
Resumo:
The mechanical activation is one of the most effective method for obtaining highly disperse system due to mechanical action stress fields form in solids during milling procedure. This effect results in changes of free energy, leading to release of heat, formation of a new surface, formation of different crystal lattice defects and initiation of solid-state chemical reaction. The accumulated deformation energy determines irreversible changes of crystal structure and consequently microstructure resulting in the change of their properties. Mechanochemical processing route has been developed recently for the production of intermetallic and alloy compounds. The intrinsic advantage of this process is that the solid-state reaction is activated due to mechanical energy instead of the temperature. It was shown that the chemical reactivity of starting materials could be improved significantly after mechanochemical activation and, subsequently, the calcination temperature was reduced. Besides, it was apparent that the mechanochemical treatment could enhance the reactivity of constituent oxides; however, the sintering process could not be avoided to develop the desired ceramics. A novel mechanochemical technique for synthesis of fine-grained perovskite structured powders has shown that it is possible to form perovskite at room temperature. The effect of milling on the formation of perovskite structure of barium titanate (BT), lead titanate (PT), PZT, PZN, magnesium niobate (PMN) and LM ceramic materials was analyzed. The dielectric properties of sintered ceramics are comparable with those prepared by other methods in the literature. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Hybrid siloxane-polymethylmethacrylate (PMMA) nanocomposites with covalent bonds between the inorganic (siloxane) and organic (polymer) phases were prepared by the sot gel process through hydrolysis and polycondensation of 3-(trimethoxysilyl)propylmethacrylate (TMSM) and polymerization of methylmethacrylate (MMA) using benzoyl peroxide (BPO) as initiator. The effect of MMA, BPO and water contents on the viscoelastic behaviour of these materials was analysed during gelation by dynamic rheological measurements. The changes in storage (G') and loss moduli (G), complex viscosity (eta*) and phase angle (6) were measured as a function of the reaction time showing the viscous character of the sot in the initial step of gelation and its progressive transformation to an elastic gel. This study was complemented by Si-29 and C-13 solid-state nuclear magnetic resonance (NMR/MAS) measurements of dried gel. The analysis of the experimental results shows that linear chains are formed in the initial step of the gelation followed by a growth of branched structures and formation of a three-dimensional network. Near the gel point this hybrid material demonstrates the typical scaling behaviour expected from percolation theory.
Resumo:
The influence of time exposure, when exposed to above band gap light (3,52 eV) and annealing, on Ga10Ge25S65 glasses has been studied through their effects on the structure and optical properties. To evaluate the photostructural change infrared and Raman spectra for bulk Ga10Ge25S65 glasses have been measured before and after exposure. The Raman spectra are interpreted in terms of models in which the Ge atoms are fourfold coordinated and the S atoms are two fold coordinated. The observed changes in the spectral region of (S-S) stretching vibration (470-490 cm (-1)) is a direct evidence for the occurrence of important structural changes in local bonding configuration caused by optical irradiation. It is shown that the dominant photostrucural changes are chain formation tendency of the chalcogenide atoms under the laser irradiation rather than rings.
Resumo:
In this work we present evidence that water molecules are actively involved on the control of binding affinity and binding site discrimination of a drug to natural DNA. In a previous study, the effect of water activity (a(w)) on the energetic parameters of actinomycin-D intercalation to natural DNA was determined using the osmotic stress method (39). This earlier study has shown evidence that water molecules act as an allosteric regulator of ligand binding to DNA via the effect of water activity on the long-range stability of the DNA secondary structure. In this work we have carried out DNA circularization experiments using the plasmid pUC18 in the absence of drugs and in the presence of different neutral solutes to evaluate the contribution of water activity to the energetics of DNA helix unwinding. The contribution of water to these independent reactions were made explicit by the description of how the changes in the free energy of ligand binding to DNA and in the free energy associated with DNA helix torsional deformation are linked to a(w) via changes in structural hydration. Taken together, the results of these studies reveal an extensive linkage between ligand binding affinity and site binding discrimination, and long range helix conformational changes and DNA hydration, This is strong evidence that water molecules work as a classical allosteric regulator of ligand binding to the DNA via its contribution to the stability of the double helix secondary structure, suggesting a possible mechanism by which the biochemical machinery of DNA processing takes advantage of the low activity of water into the cellular milieu.
Resumo:
Anelastic spectra (elastic energy absorption as a function of temperature) are reported which provide evidence that excess O in La2CuO4+delta starts forming two different types of defects already at very low concentrations, where no phase separation or changes in the type of O intercalation are believed to occur. The absorption peak with the lowest activation enthalpy, H/k(B) = 5600 K, is visible at lowest values of delta and is attributed to the hopping of single interstitial O2- ions. The second process, with a slightly slower dynamics, appears at higher values of delta and soon becomes preponderant over the former process. The latter process is proposed to be due to stable pairs of O atoms and is put in connection with the formation of partially covalent bonds between interstitial and apical oxygen; such bonds would reduce the doping efficiency of excess O at increasing delta. The geometry of the interstitial O defect is discussed. O 1998 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
It is known that the dielectric properties of BaTiO3 (BT) are strongly dependent on its grain size. Coarse-grained ceramics of pure BT showed lower dielectric constant at room temperature then fine grained. Many authors considered that when the grain size is lower than 700 nm, the lattice of BT changes from tetragonal to pseudocubic, and the dielectric constant value is very low. In the doped BT this effect is more complex, because it is necessary to consider also the influence of dopants. The grain size effect on the structure and dielectric properties of niobium-doped barium titanate was investigated. Niobium-doped barium titanate was prepared from powders obtained by doping of commercial barium titanate and from organometallic complex using citrates as precursors (Pechini procedure). The crystal and microstructure of sintered niobium-doped barium titanate were determined. Dielectric constant and dissipation factor were measured. The observation confirmed that the structure and properties are strongly dependent on grain size. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger-fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane em,, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behaviour. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P 1-30 was estimated by measuring the permeability PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the PEGs of different pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St 11 conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Diabetes mellitus can lead to reproductive disorders that in turn result in weakened fertility brought about by morphofunctional changes in the testes and accessory sex glands. However, doubts persist concerning the basic biology of the secretory epithelial cells and the stroma of the coagulating gland of diabetic mice. Thus, the objective of the present study was to analyze the histological and ultrastructural changes associated with stereology of the coagulating gland of mice with alloxan-induced diabetes, and of spontaneously diabetic mice. Sixteen mice of the C57BL/6J strain, and eight non-obese diabetic (NOD) mice were used. The animals were divided into three groups: 1) control (C), 2) alloxan diabetic (AD), and 3) NOD. Thirty days after the detection of diabetic status in group 2, all of the animals were killed and then perfused with Karnovsky's solution through the left cardiac ventricle. The coagulating gland was then removed and processed for morphometric study by light microscopy and electron microscopy. The results showed thickening of the stroma, atrophy of secretory epithelial cells, and disorganization of the organelles involved in the secretory process in both NOD and alloxan-induced mice. Thus, it may be concluded that the coagulating gland suffered drastic morphological changes, and consequently impaired glandular function, in the presence of diabetes mellitus type I in both NOD and AD mice. (C) 2003 Wiley-Liss, Inc.
Resumo:
To elucidate the morphological differences between placentas from normal and cloned cattle pregnancies reaching term, the umbilical cord, placentomes and interplacentomal region of the fetal membranes were examined macroscopically as well as by light and scanning electron microscopy. In pregnancies established by somatic nucleus transfer (NT), the umbilical cord and fetal membranes were edematous. Placentomal fusion was common, resulting in increased size and a decreased number of placentomes. Extensive areas of the chorioallantoic membrane were devoid of placentomes. An increased number of functional or accessory microcotyledons (< 1 cm) were present at the maternally oriented surface of fetal membranes. Extensive areas of extravasated maternal blood were present within the placentomes and in the interplacentomal region. The crypts on the caruncular surface were dilated and accommodated complexes of more than one primary villus, as opposed to a single villus in non-cloned placentae. Scanning electron microscopy of blood vessel casts revealed that there was also more than one stem artery per villous tree and that the ramification of the vessels failed to form dense complexes of capillary loops and sinusoidal dilations as in normal pregnancies. At the materno-fetal interface, however, the trophoblast and uterine epithelium had normal histology. In conclusion, the NT placentas had a range of pathomorphological changes; this was likely associated with the poor clinical outcome of NT pregnancies. (c) 2007 Elsevier B.V. All rights reserved.