977 resultados para pulsed plasma polymerization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long-standing challenge in transition metal catalysis is selective C–C bond coupling of simple feedstocks, such as carbon monoxide, ethylene or propylene, to yield value-added products. This work describes efforts toward selective C–C bond formation using early- and late-transition metals, which may have important implications for the production of fuels and plastics, as well as many other commodity chemicals.

The industrial Fischer-Tropsch (F-T) process converts synthesis gas (syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and oxygenates. Well-defined homogeneous catalysts for F-T may provide greater product selectivity for fuel-range liquid hydrocarbons compared to traditional heterogeneous catalysts. The first part of this work involved the preparation of late-transition metal complexes for use in syngas conversion. We investigated C–C bond forming reactions via carbene coupling using bis(carbene)platinum(II) compounds, which are models for putative metal–carbene intermediates in F-T chemistry. It was found that C–C bond formation could be induced by either (1) chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) starting complexes. These two mild methods afforded different products, constitutional isomers, suggesting that at least two different mechanisms are possible for C–C bond formation from carbene intermediates. These results are encouraging for the development of a multicomponent homogeneous catalysis system for the generation of higher hydrocarbons.

A second avenue of research focused on the design and synthesis of post-metallocene catalysts for olefin polymerization. The polymerization chemistry of a new class of group 4 complexes supported by asymmetric anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical early transition metal polymerization catalysts, NNO-ligated catalysts produce nearly regiorandom polypropylene, with as many as 30-40 mol % of insertions being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most metallocene systems. A survey of model Ti polymerization catalysts suggests that catalyst modification pathways that could affect regioselectivity, such as C–H activation of the anilide ring, cleavage of the amine R-group, or monomer insertion into metal–ligand bonds are unlikely. A parallel investigation of a Ti–amido(pyridine)phenolate polymerization catalyst, which features a five- rather than a six-membered Ti–N chelate ring, but maintained a dianionic NNO motif, revealed that simply maintaining this motif was not enough to produce regioirregular polypropylene; in fact, these experiments seem to indicate that only an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular polypropylene. As yet, the underlying causes for the unique regioselectivity of anilide(pyridine)phenolate polymerization catalysts remains unknown. Further exploration of NNO-ligated polymerization catalysts could lead to the controlled synthesis of new types of polymer architectures.

Finally, we investigated the reactivity of a known Ti–phenoxy(imine) (Ti-FI) catalyst that has been shown to be very active for ethylene homotrimerization in an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-oligomerization of heavy and light olefins. We demonstrated that the Ti-FI catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin dimerization and trimerization, respectively. Future work will include kinetic studies to determine monomer selectivity by investigating the relative rates of insertion of light olefins (e.g., ethylene) vs. higher α-olefins, as well as a more detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit this catalyst in a multi-catalyst system for conversion of simple alkenes into hydrocarbon fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employ the variational method to study the optical guiding of an intense laser beam in a preformed plasma channel without using the weakly relativistic approximation. Apart from the dependence on the laser power and the nonlinear channel strength parameter, the beam focusing properties is shown also to be governed by the laser intensity. Relativistic channel-coupling focusing, arising from the coupling between relativistic self-focusing and linear channel focusing, can enhance relativistic self-focusing but its strength is weaker than that of linear channel focusing. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fast electron propagation in an inverse cone target is investigated computationally and experimentally. Two-dimensional particle-in-cell simulation shows that fast electrons with substantial numbers are generated at the outer tip of an inverse cone target irradiated by a short intense laser pulse. These electrons are guided and confined to propagate along the inverse cone wall, forming a large surface current. The propagation induces strong transient electric and magnetic fields which guide and confine the surface electron current. The experiment qualitatively verifies the guiding and confinement of the strong electron current in the wall surface. The large surface current and induced strong fields are of importance for fast ignition related researches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In laser-target interaction, the effects of laser intensity on plasma oscillation at the front surface of targets have been investigated by one-dimensional particle in cell simulations. The periodical oscillations of the ion density and electrostatic field at the front surface of the targets are reported for the first time, which is considered as an intrinsic property of the target excited by the laser. The oscillation period depends only on initial plasma density and is irrelevant with laser intensity. Flattop structures with curves in ion phase space are found with a more intense laser pulse due to the larger amplitude variation of the electrostatic field. A simple but valid model is proposed to interpret the curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a petawatt laser with a small solid-density plasma bunch is studied by particle-in-cell simulation. It is shown that when irradiated by a laser of intensity >10(21) W/cm(2), a dense plasma bunch of micrometer size can be efficiently accelerated. The kinetic energy of the ions in the high-density region of the plasma bunch can exceed ten MeV at a density in the 10(23)-cm(-3) level. Having a flux density orders of magnitude higher than that of the traditional charged-particle pulses, the laser-accelerated plasma bunch can have a wide range of applications. In particular, such a dense energetic plasma bunch impinging on the compressed fuel in inertial fusion can significantly enhance the nuclear-reaction cross section and is thus a promising alternative for fast ignition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scheme for electron self-injection in the laser wakefield acceleration is proposed. In this scheme, the transverse wave breaking of the wakefield and the tightly focused geometry of the laser beam play important roles. A large number of the background electrons are self-injected into the acceleration phase of the wakefield during the defocusing of the tightly focused laser beam as it propagates through an underdense plasma. Particle-in-cell simulations performed using a 2D3V code have shown generation of a collimated electron bunch with a total number of 1.4 x 109 and energies up to 8 MeV. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation covers progress with bimetallic polymerization catalysts. The complexes we have designed were aimed at expanding the capabilities of homogeneous polymerization catalysts by taking advantage of multimetallic effects. Such effects were examined in group 4 and group 10 bimetallic complexes; proximity and steric repulsion were determined to be major factors in the effects observed.

Chapters 2 and 3 introduce the rigid p-terphenyl dinucleating framework utilized in most of this thesis. The permethylation of the central arene allows for the separation of syn and anti atropisomers of the terphenyl compounds. Kinetic studies were carried out to examine the isomerization of the dinucleating bis(salicylaldimine) ligand precursors. Metallation of the syn and anti bis(salicylaldimine)s using Ni(Me)2(tmeda) and excess pyridine afforded dinickel bisphenoxyiminato complexes with a methyl and a pyridyl ligand on each nickel. The syn and anti atropisomers of the dinickel complexes were structurally characterized and utilized in ethylene and ethylene/α-olefin polymerizations. Monometallic analogues were also synthesized and tested for polymerization activity. Ethylene polymerizations were performed in the presence of primary, secondary, and tertiary amines – additives that generally deactivate nickel polymerization catalysts. Inhibition of this deactivation was observed with the syn atropisomer of the bimetallic species, but not with the anti or monometallic analogues. A mechanism was proposed wherein steric repulsion of the substituents on proximal nickel centers disfavors simultaneous ligation of base to both of the metal centers. The bimetallic effect has been explored with respect to size and binding ability of the added base.

Chapter 4 presents the optimization of the bisphenoxyimine ligand synthesis and synthesis of syn and anti m-terphenyl analogues. Metallation with NiClMe(PMe3)2 yielded phosphine-ligated dinickel complexes, which have been structurally characterized. Ethylene/1-hexene copolymerizations in the presence of amines using Ni(COD)2 as a phosphine scavenger showed significantly improved activity relative to the pyridine-ligated analogues. Incorporation of amino olefins in copolymerizations with ethylene was accomplished, and a mechanism was proposed based on proximal effects. Copolymerization trials with a variety of amino olefins and ethylene/1-hexene/amino olefin terpolymerizations were completed.

Early transition metal complexes based on the rigid p-terphenyl framework were designed with a variety of donor sets (Chapter 5 and Appendix B). Chapter 5 details the use of syn dizirconium di[amine bis(phenolate)] complexes for isoselective 1-hexene and propylene homopolymerizations. Ligand variation and monometallic complexes were studied to determine the origin of tacticity control. A mechanistic proposal was presented based on the symmetry at zirconium and the steric effects of the proximal metal center. Appendix B covers additional studies of bimetallic early transition metal complexes based on the p-terphenyl. Dititanium, dizirconium, and asymmetric complexes with bisphenoxyiminato ligands and derivatives thereof were targeted. Progress toward the synthesis of these complexes is described along with preliminary polymerization data. 1-hexene/diene copolymerizations and attempted polymerizations in the presence of ethers and esters with the syn dizirconium di[amine bis(phenolate)] complexes demonstrate the potential for further applications of this system in catalysis.

Appendix A includes work toward palladium catalysts for insertion polymerization of polar monomers. These complexes were based on dioxime and diimine frameworks with the intent of binding Lewis acidic metals at the oxime oxygens, at pendant phenolic donors, or at pendant aminediol moieties. The synthesis and structural characterization of a number of palladium and Lewis acid complexes is presented. Due to the instability of the desired species, efforts toward isolation of the desired complexes proved unsuccessful, though preliminary ethylene/methyl acrylate copolymerizations using in situ activation of the palladium species were attempted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model for resonance absorption during the oblique incidence by femtosecond laser pulses on a small-scale-length density plasma [k(0)L is an element of(0.1,10)] is proposed. The physics of resonance absorption is analyzed more clearly as we separate the electric field into an electromagnetic part and an electrostatic part. It is found that the characteristics of the physical quantities (fractional absorption, optimum angle, etc.) in a small-scale-length plasma are quite different from the predictions of classical theory. Absorption processes are generally dependent on the density scale length. For shorter scale length or higher laser intensity, vacuum heating tends to be dominant. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking. This can lead to heating of the plasma at the expanse of the wave energy. It is found that the optimum angle is independent of the laser intensity while the absorption rate increases with the laser intensity, and the absorption rate can reach as high as 25%. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model for JxB heating during the normal incidence by a short ultraintense linearly polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the JxB heating includes two distinct coupling processes depending on the initial laser and plasma conditions: for a moderate intensity (a <= 1), the ponderomotive force of the laser light can drive a large plasma wave at the point n(e)=4 gamma(0)n(c) resonantly. When this plasma wave is damped, the energy is transferred to the plasma. At higher intensity, the electron density is steepened to a high level by the time-independent ponderomotive force, n(e)> 4 gamma(0)n(c), so that no 2 omega resonance will occur, but the longitudinal component of the oscillating ponderomotive field can lead to an absorption mechanism similar to "vacuum heating." (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the evolution of filamentation in air by using a longitudinal diffraction method and a plasma fluorescence imaging technique. The diameter of a single filament in which the intensity is clamped increases as the energy of the pump light pulse increases, until multiple filaments appear. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Femtosecond explosive processes of argon clusters irradiated by linearly chirped ultraintense laser pulses have been investigated by 90 degrees side spectral scattering. The spectral redshift and blueshift, which correlate with the cluster explosion processes have been measured for negatively and positively chirped driving laser pulses, respectively. The evolution of the heated-cluster polarizability indicates that the core of the cluster is shielded from the laser field in the beginning of the explosion and enhanced scattering occurs after the fast explosion initiates. Evidence of resonant heating is found from the coincidence of enhanced scattering with enhanced absorption measured using the transmitted spectra. Anomalously large-size clusters with very low gas density have been observed in this way and can be used as clean and important cluster targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using density functional theory, we studied the fundamental steps of olefin polymerization for zwitterionic and cationic Group IV ansa-zirconocenes and a neutral ansa- yttrocene. Complexes [H2E(C5H4)2ZrMe]n (n = 0: E = BH2 (1), BF2 (2), AlH2(3); n = +: E = CH2(4), SiH2(5)) and H2Si(C5H4)2YMe were used as computational models. The largest differences among these three classes of compounds were the strength of olefin binding and the stability of the β-agostic alkyl intermediate towards β-hydrogen elimination. We investigated the effect of solvent on the reaction energetics for land 5. We found that in benzene the energetics became very similar except that a higher olefin insertion barrier was calculated for 1. The calculated anion affinity of [CH3BF3]- was weaker towards 1 than 5. The calculated olefin binding depended primarily on the charge of the ansa linker, and the olefin insertion barrier was found to decrease steadily in the following order: [H2C(C5H4)2ZrMe]+ > [F2B(C5H4)2ZrMe] ≈ [H2B(C5H4)2ZrMe] > [H2Si(C5H4)2ZrMe]+ > [H2Al(C5H4)2ZrMe].

We prepared ansa-zirconocene dicarbonyl complexes Me2ECp2Zr(CO)2 (E = Si, C), and t-butyl substituted complexes (t-BuCp)2Zr(CO)2, Me2E(t-BuCp)2Zr(CO)2 (E = Si, C), (Me2Si)2(t-BuCp)2Zr(CO)2 as well as analogous zirconocene complexes. Both the reduction potentials and carbonyl stretching frequencies follow the same order: Me2SiCp2ZrCl2> Me2CCp2ZrCl2> Cp2ZrCl2> (Me2Si)2Cp2ZrCl2. This ordering is a result of both the donating abilities of the cyclopentadienyl substituents and the orientation of the cyclopentadiene rings. Additionally, we prepared a series of analogous cationic zirconocene complexes [LZrOCMe3][MeB(C6F5)3] (L = CP2, Me2SiCp2, Me2CCP2, (Me2Si)2Cp2) and studied the kinetics of anion dissociation. We found that the enthalpy of anion dissociation increased from 10.3 kcal•mol-1 to 17.6 kcal•mol-1 as exposure of the zirconium center increased.

We also prepared series of zirconocene complexes bearing 2,2-dimethyl-2-sila-4-pentenyl substituents (and methyl-substituted olefin variants). Methide abstraction with B(C6F5) results in reversible coordination of the tethered olefin to the cationic zirconium center. The kinetics of olefin dissociation have been examined using NMR methods, and the effects of ligand variation for unlinked, singly [SiMe2]-linked and doubly [SiMe2]-linked bis(cyclopentadienyl) arrangements has been compared (ΔG‡ for olefin dissociation varies from 12.8 to 15.6 kcal•mol-1). Methide abstraction from 1,2-(SiMe2)25-C5H3)2Zr(CH3)-(CH2CMe2CH2CH = CH2) results in rapid β-allyl elimination with loss of isobutene yielding the allyl cation [{1,2-(SiMe2)25-C5H3)2Zr(η3-CH2CH=CH2)]+.