975 resultados para proteolytic cleavage


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies concerning the antigenicity of thyroglobulin fragments allow the characterization of the epitopes but do not consider the role of heavier antigenic fragments that could result in vivo from the action of endoproteases. Here we assess the relative importance of the fragments obtained from thyroglobulin by limited proteolysis with trypsin and compare by immunoblotting their reactivity to serum from patients with autoimmune (Graves' disease and Hashimoto's thyroiditis) and non-autoimmune (subacute thyroiditis) disease. The results showed no difference in frequency of recognition of any peptide by sera from patients with autoimmune thyroiditis. In contrast, sera from patients with subacute thyroiditis reacted more frequently with a peptide of 80 kDa. These results suggest the presence of antibody subpopulations directed at fragments produced in vivo by enzymatic cleavage of thyroglobulin. This fragment and antibodies to it may represent markers for subacute thyroiditis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induction of apoptosis by tumor necrosis factor (TNF) is modulated by changes in the expression and activity of several cell cycle regulatory proteins. We examined the effects of TNF (1-100 ng/ml) and butyrolactone I (100 µM), a specific inhibitor of cyclin-dependent kinases (CDK) with high selectivity for CDK-1 and CDK-2, on three different cancer cell lines: WEHI, L929 and HeLa S3. Both compounds blocked cell growth, but only TNF induced the common events of apoptosis, i.e., chromatin condensation and ladder pattern of DNA fragmentation in these cell lines. The TNF-induced apoptosis events were increased in the presence of butyrolactone. In vitro phosphorylation assays for exogenous histone H1 and endogenous retinoblastoma protein (pRb) in the total cell lysates showed that treatment with both TNF and butyrolactone inhibited the histone H1 kinase (WEHI, L929 and HeLa) and pRb kinase (WEHI) activities of CDKs, as compared with the controls. The role of proteases in the TNF and butyrolactone-induced apoptosis was evaluated by comparing the number and expression of polypeptides in the cell lysates by gel electrophoresis. TNF and butyrolactone treatment caused the disappearance of several cellular protein bands in the region between 40-200 kDa, and the 110- 90- and 50-kDa proteins were identified as the major substrates, whose degradation was remarkably increased by the treatments. Interestingly, the loss of several cellular protein bands was associated with the marked accumulation of two proteins apparently of 60 and 70 kDa, which may be cleavage products of one or more proteins. These findings link the decrease of cyclin-dependent kinase activities to the increase of protease activities within the growth arrest and apoptosis pathways induced by TNF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell interactions with extracellular matrices are important to pathological changes that occur during cell transformation and tumorigenesis. Several extracellular matrix proteins including fibronectin, thrombospondin-1, laminin, SPARC, and osteopontin have been suggested to modulate tumor phenotype by affecting cell migration, survival, or angiogenesis. Likewise, proteases including the matrix metalloproteinases (MMPs) are understood to not only facilitate migration of cells by degradation of matrices, but also to affect tumor formation and growth. We have recently demonstrated an in vivo role for the RGD-containing protein, osteopontin, during tumor progression, and found evidence for distinct functions in the host versus the tumor cells. Because of the compartmentalization and temporal regulation of MMP expression, it is likely that MMPs may also function dually in host stroma and the tumor cell. In addition, an important function of proteases appears to be not only degradation, but also cleavage of matrix proteins to generate functionally distinct fragments based on receptor binding, biological activity, or regulation of growth factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertebrate gap junctions are aggregates of transmembrane channels which are composed of connexin (Cx) proteins encoded by at least fourteen distinct genes in mammals. Since the same Cx type can be expressed in different tissues and more than one Cx type can be expressed by the same cell, the thorough identification of which connexin is in which cell type and how connexin expression changes after experimental manipulation has become quite laborious. Here we describe an efficient, rapid and simple method by which connexin type(s) can be identified in mammalian tissue and cultured cells using endonuclease cleavage of RT-PCR products generated from "multi primers" (sense primer, degenerate oligonucleotide corresponding to a region of the first extracellular domain; antisense primer, degenerate oligonucleotide complementary to the second extracellular domain) that amplify the cytoplasmic loop regions of all known connexins except Cx36. In addition, we provide sequence information on RT-PCR primers used in our laboratory to screen individual connexins and predictions of extension of the "multi primer" method to several human connexins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive arthritis (ReA) is an inflammatory joint disease triggered by certain bacterial infections e.g. gastroenteritis caused by Salmonella. ReA is strongly associated to HLA-B27. However, the mechanism behind this association is unknown but it is suggested that the bacteria or bacterial compartments persist in the body. In this study, it was investigated whether the intracellular signaling is altered in HLA-B27- transfected U937 monocytic macrophages. Moreover, the contribution of HLA–B27 heavy chain (HC) misfolding was of interest. The study revealed that p38 activity plays a crucial role in controlling intracellular Salmonella Enteritidis in U937 cells. The replication of intracellular bacteria was dependent on p38 kinase and the activity of p38 was dysregulated in HLA-B27- transfected cells expressing misfolding heavy chains (HCs). Also the double-stranded RNA -dependent kinase (PKR) that modifies p38 signaling was overexpressed and hypophosphorylated upon infection and lipopolysaccharide stimulation. The expression of CCAAT enhancer binding protein beta (C/EBPβ) was found to be increased after infection and stimulation. Increased amount of full length human antigen R (HuR), disturbed HuR cleavage and reduced dependence on PKR after infection were observed. All the findings were linked to HLA-B27 HCs containing misfoldingassociated glutamic acid 45 (Glu45) at the peptide binding groove. The results indicate that the expression of HLA-B27 modulates the intracellular environment of U937 monocytic macrophages by altering signaling. This phenomenon is at least partially associated to the HLA-B27 misfolding. These observations offer a novel explanation how HLA-B27 may modulate inflammatory response induced by ReA-triggering bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute lung injury is characterized by a severe disruption of alveolo-capillary structures and includes a variety of changes in lung cell populations. Evidence suggests the occurrence of rupture of the basement membranes and interstitial matrix remodeling during acute lung injury. The dynamic equilibrium of the extracellular matrix (ECM) under physiological conditions is a consequence of the balance between the regulation of synthesis and degradation of ECM components. Matrix metalloproteinases (MMPs) represent a group of enzymes involved in the degradation of most of the components of the ECM and therefore participate in tissue remodeling associated with pathological situations such as acute lung injury. MMP activity is regulated by proteolytic activation of the latent secreted proenzyme and by interaction with specific tissue inhibitors of metalloproteinases. This review details our knowledge of the involvement of MMPs, namely MMP-2 and MMP-9, in acute lung injury and acute respiratory distress syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over a 15-year period, our university-based laboratory obtained 125 adrenal tumors, of which 15 (12%) were adrenal cortical carcinomas. Of these, 6 (40% of the carcinomas) occurred in patients with clear clinical manifestations of steroid hormone excess. Adrenal cortical carcinoma cells derived from the surgically resected tumors in 4 of these patients were isolated and established in primary culture. Radiotracer steroid interconversion studies were carried out with these cultures and also on mitochondria isolated from homogenized tissues. Large tumors had the lowest steroidogenic activities per weight, whereas small tumors had more moderately depressed enzyme activities relative to cells from normal glands. In incubations with pregnenolone as substrate, 1 mM metyrapone blocked the synthesis of corticosterone and cortisol and also the formation of aldosterone. Metyrapone inhibition was associated with a concomitant increase in the formation of androgens (androstenedione and testosterone) from pregnenolone. Administration of metyrapone in vivo before surgery in one patient resulted in a similar increase in plasma androstenedione, though plasma testosterone levels were not significantly affected. In cultures of two of four tumors examined, dibutyryl cAMP stimulated 11ß-hydroxylase activity modestly; ACTH also had a significant stimulatory effect in one of these tumors. Unlike results obtained with normal or adenomatous adrenal cortical tissues, mitochondria from carcinomatous cells showed a lack of support of either cholesterol side-chain cleavage enzyme complex or steroid 11ß-hydroxylase activity by Krebs cycle intermediates (10 mM isocitrate, succinate or malate). This finding is consistent with the concept that these carcinomas may tend to function predominantly in an anaerobic manner, rather than through the oxidation of Krebs cycle intermediates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is a highly heterogenous malignancy, which despite of the similar histological type shows different clinical behaviour and response to therapy. Prognostic factors are used to estimate the risk for recurrence and the likelihood of treatment effectiveness. Because breast cancer is one of the most common causes of cancer death in women worldwide, identification of new prognostic markers are needed to develop more specific and targeted therapies. Cancer is caused by uncontrolled cell proliferation. The cell cycle is controlled by specific proteins, which are known as cyclins. They function at important checkpoints by activating cyclin-dependent kinase enzymes. Overexpression of different cyclins has been linked to several cancer types and altered expression of cyclins A, B1, D1 and E has been associated with poor survival. Little is known about the combined expression of cyclins in relation to the tumour grade, breast cancer subtype and other known prognostic factors. In this study cyclins A, B1 and E were shown to correlate with histological grade, Ki-67 and HER2 expression. Overexpression of cyclin D1 correlated with receptor status and non-basal breast cancer suggesting that cyclin D1 might be a marker of good prognosis. Proteolysis in the surrounding tumour stroma is increased during cancer development. Matrix metalloproteinases (MMPs) are proteolytic enzymes that are capable of degrading extracellular matrix proteins. Increased expression and activation of several MMPs have been found in many cancers and MMPs appear to be important regulators of invasion and metastasis. In this study MMP-1 expression was analysed in breast cancer epithelial cells and in cancer associated stromal cells. MMP-1 expression by breast cancer epithelial cells was found to carry an independent prognostic value as did Ki-67 and bcl-2. The results suggest that in addition to stromal cells MMP-1 expression in tumour cells control breast cancer progression. Decorin is a small proteoglycan and an important component of the extracellular matrix. Decorin has been shown to inhibit growth of tumour cells and reduced decorin expression is associated with a poor prognosis in several cancer types. There has been some suspicion wheather different cancer cells express decorin. In this study decorin expression was shown to localize only in the cells of the original stroma, while breast cancer epithelial cells were negative for decorin expression. However, transduction of decorin in decorin-negative human breast cancer cells markedly modulated the growth pattern of these cells. This study provides evidence that targeted decorin transduction to breast cancer cells could be used as a novel adjuvant therapy in breast malignancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioetanolin valmistus selluloosapitoisista raaka-aineista vaatii selluloosapolymeerien pilkkomisen liukoisiksi sokereiksi. Tämä voidaan toteuttaa entsymaattisella hydrolyysillä. Selluloosan pilkkomiseen tarkoitetut entsyymit, sellulaasit, ovat entsymaattisen hydrolyysin jälkeen sitoutuneet joko kiintoainefaasiin tai ovat nestemäisessä faasissa ns. vapaina entsyymeinä. Prosessin taloudellisuuden kannalta on erityisen tärkeää minimoida siinä käytettävien entsyymien tarve, sillä tehokkaat entsyymivalmisteet ovat suhteellisen kalliita. Yksi varteenotettava vaihtoehto bioetanoliprosessin saamiseksi taloudellisemmaksi on käytettyjen entsyymien talteenotto ja kierrätys. Työn tarkoituksena oli selvittää kirjallisuudesta, millaisia menetelmiä on kehitetty entsyymien talteenottoon ja kierrätykseen lignoselluloosasta valmistettavan bioetanolin valmistuksessa. Työssä on keskitytty tuoreisiin tutkimuksiin ja menetelmien käyttökelpoisuuteen ja taloudellisuuteen. Viime vuosina sellulaasien talteenotto- ja kierrätysmenetelmiä koskevat tutkimukset ovat keskittyneet pääasiassa käsittelemään nanopartikkelien avulla tapahtuvaa entsyymien immobilisointia, ultrasuodatusta, erilaisia desorptiomenetelmiä, kiinteän hydrolyysijäännöksen kierrättämistä, tuoreen substraatin lisäämistä sekä myös tislausvaiheen jälkeistä entsyymien kierrättämistä. Jotta kierrätysmenetelmä olisi tehokas, tulisi sen pyrkiä säilyttämään entsyymien aktiivisuuksia, sokerisaantoa menettämättä ja sisältää sekä neste-, että kiintoainefaasista tapahtuva kierrätys. Jokaisella kierrätysmenetelmällä on hyvät ja huonot puolensa. Entsyymien talteenottoastetta saadaan kuitenkin parannettua yhdistämällä erilaisia menetelmiä. Useista tutkimuksista huolimatta, taloudellisinta ja käyttökelpoisinta entsyymien talteenotto- ja kierrätysmenetelmää ei ole vielä saavutettu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loxoscelism, the term used to describe lesions and clinical manifestations induced by brown spider's venom (Loxosceles genus), has attracted much attention over the last years. Brown spider bites have been reported to cause a local and acute inflammatory reaction that may evolve to dermonecrosis (a hallmark of envenomation) and hemorrhage at the bite site, besides systemic manifestations such as thrombocytopenia, disseminated intravascular coagulation, hemolysis, and renal failure. The molecular mechanisms by which Loxosceles venoms induce injury are currently under investigation. In this review, we focused on the latest reports describing the biological and physiopathological aspects of loxoscelism, with reference mainly to the proteases recently described as metalloproteases and serine proteases, as well as on the proteolytic effects triggered by L. intermedia venom upon extracellular matrix constituents such as fibronectin, fibrinogen, entactin and heparan sulfate proteoglycan, besides the disruptive activity of the venom on Engelbreth-Holm-Swarm basement membranes. Degradation of these extracellular matrix molecules and the observed disruption of basement membranes could be related to deleterious activities of the venom such as loss of vessel and glomerular integrity and spreading of the venom toxins to underlying tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The opportunistic bacterium Proteus mirabilis secretes a metalloprotease, ZapA, considered to be one of its virulence factors due to its IgA-degrading activity. However, the substrate specificity of this enzyme has not yet been fully characterized. In the present study we used fluorescent peptides derived from bioactive peptides and the oxidized ß-chain of insulin to determine the enzyme specificity. The bradykinin- and dynorphin-derived peptides were cleaved at the single bonds Phe-Ser and Phe-Leu, with catalytic efficiencies of 291 and 13 mM/s, respectively. Besides confirming already published cleavage sites, a novel cleavage site was determined for the ß-chain of insulin (Val-Asn). Both the natural and the recombinant enzyme displayed the same broad specificity, demonstrated by the presence of hydrophobic, hydrophilic, charged and uncharged amino acid residues at the scissile bonds. Native IgA, however, was resistant to hydrolysis by ZapA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term "family" is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auxemma oncocalyx Taub. belongs to the Boraginaceae family and is native to the Brazilian northeast where it is known as "pau-branco". We investigated the ability of the water soluble fraction isolated from the heartwood of A. oncocalyx to inhibit sea urchin egg development. This fraction contains about 80% oncocalyxone A (quinone fraction), a compound known to possess strong cytotoxic and antitumor activities. In fact, the quinone fraction inhibited cleavage in a dose-dependent manner [IC50 of 18.4 (12.4-27.2) µg/ml, N = 6], and destroyed the embryos in the blastula stage [IC50 of 16.2 (13.7-19.2) µg/ml, N = 6]. We suggest that this activity is due to the presence of oncocalyxone A. In fact, these quinones present in A. oncocalyx extract have strong toxicity related to their antimitotic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml) on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates) reduced (1.2 to 3.0 times) the catalytic efficiency of kallikrein (in a nanomolar range) on the hydrolysis of plasminogen (0.3 to 1.8 µM) and increased (1.9 to 7.7 times) the enzyme efficiency in factor XII (0.1 to 10 µM) activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times) kallikrein inhibition by antithrombin (1.4 µM), while chondroitin 4- and 6-sulfates reduced it (1.3 times). Heparin and heparan sulfate increased (1.4 times) the enzyme inhibition by the C1-inhibitor (150 nM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fucan is a term used to denote a family of sulfated L-fucose-rich polysaccharides which are present in the extracellular matrix of brown seaweed and in the egg jelly coat of sea urchins. Plant fucans have several biological activities, including anticoagulant and antithrombotic, related to the structural and chemical composition of polysaccharides. We have extracted sulfated polysaccharides from the brown seaweed Dictyota menstrualis by proteolytic digestion, followed by separation into 5 fractions by sequential acetone precipitation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. The anticoagulant activity of these heterofucans was determined by activated partial thromboplastin time (APTT) using citrate normal human plasma. Only the fucans F1.0v and F1.5v showed anticoagulant activity. To prolong the coagulation time to double the baseline value in the APTT, the required concentration of fucan F1.0v (20 µg/ml) was only 4.88-fold higher than that of the low molecular weight heparin Clexane® (4.1 µg/ml), whereas 80 µg/ml fucan 1.5 was needed to obtain the same effect. For both fucans this effect was abolished by desulfation. These polymers are composed of fucose, xylose, uronic acid, galactose, and sulfate at molar ratios of 1.0:0.8:0.7:0.8:0.4 and 1.0:0.3:0.4:1.5:1.3, respectively. This is the fist report indicating the presence of a heterofucan with higher anticoagulant activity from brown seaweed.