868 resultados para process modelling
Resumo:
Background: Post-discharge mortality is a frequent but poorly recognized contributor to child mortality in resource limited countries. The identification of children at high risk for post-discharge mortality is a critically important first step in addressing this problem. Objectives: The objective of this project was to determine the variables most likely to be associated with post-discharge mortality which are to be included in a prediction modelling study. Methods: A two-round modified Delphi process was completed for the review of a priori selected variables and selection of new variables. Variables were evaluated on relevance according to (1) prediction (2) availability (3) cost and (4) time required for measurement. Participants included experts in a variety of relevant fields. Results: During the first round of the modified Delphi process, 23 experts evaluated 17 variables. Forty further variables were suggested and were reviewed during the second round by 12 experts. During the second round 16 additional variables were evaluated. Thirty unique variables were compiled for use in the prediction modelling study. Conclusion: A systematic approach was utilized to generate an optimal list of candidate predictor variables for the incorporation into a study on prediction of pediatric post-discharge mortality in a resource poor setting.
Resumo:
Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.
Resumo:
The efficiency of current cargo screening processes at sea and air ports is unknown as no benchmarks exists against which they could be measured. Some manufacturer benchmarks exist for individual sensors but we have not found any benchmarks that take a holistic view of the screening procedures assessing a combination of sensors and also taking operator variability into account. Just adding up resources and manpower used is not an effective way for assessing systems where human decision-making and operator compliance to rules play a vital role. For such systems more advanced assessment methods need to be used, taking into account that the cargo screening process is of a dynamic and stochastic nature. Our project aim is to develop a decision support tool (cargo-screening system simulator) that will map the right technology and manpower to the right commodity-threat combination in order to maximize detection rates. In this paper we present a project outline and highlight the research challenges we have identified so far. In addition we introduce our first case study, where we investigate the cargo screening process at the ferry port in Calais.
Resumo:
The study of immune system aging, i.e. immunosenescence, is a relatively new research topic. It deals with understanding the processes of immuno-degradation that indicate signs of functionality loss possibly leading to death. Even though it is not possible to prevent immunosenescence, there is great benefit in comprehending its causes, which may help to reverse some of the damage done and thus improve life expectancy. One of the main factors influencing the process of immunosenescence is the number and phenotypical variety of naive T cells in an individual. This work presents a review of immunosenescence, proposes system dynamics modelling of the processes involving the maintenance of the naive T cell repertoire and presents some preliminary results.
Resumo:
This study presents the procedure followed to make a prediction of the critical flutter speed for a composite UAV wing. At the beginning of the study, there was no information available on the materials used for the construction of the wing, and the wing internal structure was unknown. Ground vibration tests were performed in order to detect the structure’s natural frequencies and mode shapes. From tests, it was found that the wing possesses a high stiffness, presenting well separated first bending and torsional natural frequencies. Two finite element models were developed and matched to experimental results. It has been necessary to introduce some assumptions, due to the uncertainties regarding the structure. The matching process was based on natural frequencies’ sensitivity with respect to a change in the mechanical properties of the materials. Once experimental results were met, average material properties were also found. Aerodynamic coefficients for the wing were obtained by means of a CFD software. The same analysis was also conducted when the wing is deformed in its first four mode shapes. A first approximation for flutter critical speed was made with the classical V - g technique. Finally, wing’s aeroelastic behavior was simulated using a coupled CFD/CSD method, obtaining a more accurate flutter prediction. The CSD solver is based on the time integration of modal dynamic equations, requiring the extraction of mode shapes from the previously performed finite-element analysis. Results show that flutter onset is not a risk for the UAV, occurring at velocities well beyond its operative range.
Resumo:
Predicting the evolution of a coastal cell requires the identification of the key drivers of morphology. Soft coastlines are naturally dynamic but severe storm events and even human intervention can accelerate any changes that are occurring. However, when erosive events such as barrier breaching occur with no obvious contributory factors, a deeper understanding of the underlying coastal processes is required. Ideally conclusions on morphological drivers should be drawn from field data collection and remote sensing over a long period of time. Unfortunately, when the Rossbeigh barrier beach in Dingle Bay, County Kerry, began to erode rapidly in the early 2000’s, eventually leading to it breaching in 2008, no such baseline data existed. This thesis presents a study of the morphodynamic evolution of the Inner Dingle Bay coastal system. The study combines existing coastal zone analysis approaches with experimental field data collection techniques and a novel approach to long term morphodynamic modelling to predict the evolution of the barrier beach inlet system. A conceptual model describing the long term evolution of Inner Dingle Bay in 5 stages post breaching was developed. The dominant coastal processes driving the evolution of the coastal system were identified and quantified. A new methodology of long term process based numerical modelling approach to coastal evolution was developed. This method was used to predict over 20 years of coastal evolution in Inner Dingle Bay. On a broader context this thesis utilised several experimental coastal zone data collection and analysis methods such as ocean radar and grain size trend analysis. These were applied during the study and their suitability to a dynamic coastal system was assessed.
Resumo:
Model predictive control (MPC) has often been referred to in literature as a potential method for more efficient control of building heating systems. Though a significant performance improvement can be achieved with an MPC strategy, the complexity introduced to the commissioning of the system is often prohibitive. Models are required which can capture the thermodynamic properties of the building with sufficient accuracy for meaningful predictions to be made. Furthermore, a large number of tuning weights may need to be determined to achieve a desired performance. For MPC to become a practicable alternative, these issues must be addressed. Acknowledging the impact of the external environment as well as the interaction of occupants on the thermal behaviour of the building, in this work, techniques have been developed for deriving building models from data in which large, unmeasured disturbances are present. A spatio-temporal filtering process was introduced to determine estimates of the disturbances from measured data, which were then incorporated with metaheuristic search techniques to derive high-order simulation models, capable of replicating the thermal dynamics of a building. While a high-order simulation model allowed for control strategies to be analysed and compared, low-order models were required for use within the MPC strategy itself. The disturbance estimation techniques were adapted for use with system-identification methods to derive such models. MPC formulations were then derived to enable a more straightforward commissioning process and implemented in a validated simulation platform. A prioritised-objective strategy was developed which allowed for the tuning parameters typically associated with an MPC cost function to be omitted from the formulation by separation of the conflicting requirements of comfort satisfaction and energy reduction within a lexicographic framework. The improved ability of the formulation to be set-up and reconfigured in faulted conditions was shown.
Resumo:
A novel numerical model of a Bent Backwards Duct Buoy (BBDB) Oscillating Water Column (OWC) Wave Energy Converter was created based on existing isolated numerical models of the different energy conversion systems utilised by an OWC. The novel aspect of this numerical model is that it incorporates the interdependencies of the different power conversion systems rather than modelling each system individually. This was achieved by accounting for the dynamic aerodynamic damping caused by the changing turbine rotational velocity by recalculating the turbine damping for each simulation sample and applying it via a feedback loop. The accuracy of the model was validated using experimental data collected during the Components for Ocean Renewable Energy Systems (CORES) EU FP-7 project that was tested in Galway Bay, Ireland. During the verification process, it was discovered that the model could also be applied as a valuable tool when troubleshooting device performance. A new turbine was developed and added to a full scale model after being investigated using Computational Fluid Dynamics. The energy storage capacity of the impulse turbine was investigated by modelling the turbine with both high and low inertia and applying three turbine control theories to the turbine using the full scale model. A single Maximum Power Point Tracking algorithm was applied to the low-inertia turbine, while both a fixed and dynamic control algorithm was applied to the high-inertia turbine. These results suggest that the highinertia turbine could be used as a flywheel energy storage device that could help minimize output power variation despite the low operating speed of the impulse turbine. This research identified the importance of applying dynamic turbine damping to a BBDB OWC numerical model, revealed additional value of the model as a device troubleshooting tool, and found that an impulse turbine could be applied as an energy storage system.
Resumo:
The mechanical behaviour and performance of a ductile iron component is highly dependent on the local variations in solidification conditions during the casting process. Here we show a framework which combine a previously developed closed chain of simulations for cast components with a micro-scale Finite Element Method (FEM) simulation of the behaviour and performance of the microstructure. A casting process simulation, including modelling of solidification and mechanical material characterization, provides the basis for a macro-scale FEM analysis of the component. A critical region is identified to which the micro-scale FEM simulation of a representative microstructure, generated using X-ray tomography, is applied. The mechanical behaviour of the different microstructural phases are determined using a surrogate model based optimisation routine and experimental data. It is discussed that the approach enables a link between solidification- and microstructure-models and simulations of as well component as microstructural behaviour, and can contribute with new understanding regarding the behaviour and performance of different microstructural phases and morphologies in industrial ductile iron components in service.
Resumo:
Semantic relations are an important element in the construction of ontology-based linguistic resources and models of problem domains. Nevertheless, they remain under-specified. This is a pervasive problem in both Software Engineering and Artificial Intelligence. Thus, we find semantic links that can have multiple interpretations, abstractions that are not enough to represent the relation richness of problem domains, and even poorly structured taxonomies. However, if provided with precise semantics, some of these problems can be avoided, and meaningful operations can be performed on them that can be an aid in the ontology construction process. In this paper we present some insightful issues about the representation of relations. Moreover, the initiatives aiming to provide relations with clear semantics are explained and the inclusion of their core ideas as part of a methodology for the development of ontology-based linguistic resources is proposed.
Resumo:
The present paper presents an application that composes formal poetry in Spanish in a semiautomatic interactive fashion. JASPER is a forward reasoning rule-based system that obtains from the user an intended message, the desired metric, a choice of vocabulary, and a corpus of verses; and, by intelligent adaptation of selected examples from this corpus using the given words, carries out a prose-to-poetry translation of the given message. In the composition process, JASPER combines natural language generation and a set of construction heuristics obtained from formal literature on Spanish poetry.
Resumo:
This paper presents the development of a combined experimental and numerical approach to study the anaerobic digestion of both the wastes produced in a biorefinery using yeast for biodiesel production and the wastes generated in the preceding microbial biomass production. The experimental results show that it is possible to valorise through anaerobic digestion all the tested residues. In the implementation of the numerical model for anaerobic digestion, a procedure for the identification of its parameters needs to be developed. A hybrid search Genetic Algorithm was used, followed by a direct search method. In order to test the procedure for estimation of parameters, first noise-free data was considered and a critical analysis of the results obtain so far was undertaken. As a demonstration of its application, the procedure was applied to experimental data.
Resumo:
Anaerobic digestion (AD) of wastewater is a very interesting option for waste valorization, energy production and environment protection. It is a complex, naturally occurring process that can take place inside bioreactors. The capability of predicting the operation of such bioreactors is important to optimize the design and the operation conditions of the reactors, which, in part, justifies the numerous AD models presently available. The existing AD models are not universal, have to be inferred from prior knowledge and rely on existing experimental data. Among the tasks involved in the process of developing a dynamical model for AD, the estimation of parameters is one of the most challenging. This paper presents the identifiability analysis of a nonlinear dynamical model for a batch reactor. Particular attention is given to the structural identifiability of the model, which considers the uniqueness of the estimated parameters. To perform this analysis, the GenSSI toolbox was used. The estimation of the model parameters is achieved with genetic algorithms (GA) which have already been used in the context of AD modelling, although not commonly. The paper discusses its advantages and disadvantages.