920 resultados para probability distribution
Resumo:
Angular distribution of microscopic ion fluxes around nanotubes arranged into a dense ordered pattern on the surface of the substrate is studied by means of multiscale numerical simulation. The Monte Carlo technique was used to show that the ion current density is distributed nonuniformly around the carbon nanotubes arranged into a dense rectangular array. The nonuniformity factor of the ion current flux reaches 7 in dense (5× 1018 m-3) plasmas for a nanotube radius of 25 nm, and tends to 1 at plasma densities below 1× 1017 m-3. The results obtained suggest that the local density of carbon adatoms on the nanotube side surface, at areas facing the adjacent nanotubes of the pattern, can be high enough to lead to the additional wall formation and thus cause the single- to multiwall structural transition, and other as yet unexplained nanoscience phenomena.
Resumo:
The distribution of flux of carbon-bearing cations over nanopatterned surfaces with conductive nanotips and nonconductive nanoislands is simulated using the Monte-Carlo technique. It is shown that the ion current is focused to nanotip surfaces when the negative substrate bias is low and only slightly perturbed at higher substrate biases. In the low-bias case, the mean horizontal ion displacement caused by the nanotip electric field exceeds 10 nm. However, at higher substrate biases, this value reduces down to 2 nm. In the nonconductive nanopattern case, the ion current distribution is highly nonuniform, with distinctive zones of depleted current density around the nanoislands. The simulation results suggest the efficient means to control ion fluxes in plasma-aided nanofabrication of ordered nanopatterns, such as nanotip microemitter structures and quantum dot or nanoparticle arrays. © World Scientific Publishing Company.
Resumo:
Texture information in the iris image is not uniform in discriminatory information content for biometric identity verification. The bits in an iris code obtained from the image differ in their consistency from one sample to another for the same identity. In this work, errors in bit strings are systematically analysed in order to investigate the effect of light-induced and drug-induced pupil dilation and constriction on the consistency of iris texture information. The statistics of bit errors are computed for client and impostor distributions as functions of radius and angle. Under normal conditions, a V-shaped radial trend of decreasing bit errors towards the central region of the iris is obtained for client matching, and it is observed that the distribution of errors as a function of angle is uniform. When iris images are affected by pupil dilation or constriction the radial distribution of bit errors is altered. A decreasing trend from the pupil outwards is observed for constriction, whereas a more uniform trend is observed for dilation. The main increase in bit errors occurs closer to the pupil in both cases.
Resumo:
The effect of density and size of dust grains on the electron energy distribution function (EEDF) in low-temperature complex plasmas is studied. It is found that the EEDF depends strongly on the dust density and size. The behavior of the electron temperature can differ significantly from that of a pristine plasma. For low-pressure argon glow discharge, the Druyvesteyn-like EEDF often found in pristine plasmas can become nearly Maxwellian if the dust density and/or sizes are large. One can thus control the plasma parameters by the dust grains.
Resumo:
Control and diagnostics of low-frequency (∼ 500 kHz) inductively coupled plasmas for chemical vapor deposition (CVD) of nano-composite carbon nitride-based films is reported. Relation between the discharge control parameters, plasma electron energy distribution/probability functions (EEDF/EEPF), and elemental composition in the deposited C-N based thin films is investigated. Langmuir probe technique is employed to monitor the plasma density and potential, effective electron temperature, and EEDFs/EEPFs in Ar + N2 + CH4 discharges. It is revealed that varying RF power and gas composition/pressure one can engineer the EEDFs/EEPFs to enhance the desired plasma-chemical gas-phase reactions thus controlling the film chemical structure. Auxiliary diagnostic tools for study of the RF power deposition, plasma composition, stability, and optical emission are discussed as well.
Resumo:
This study aimed to explore the spatiotemporal patterns, geographic co-distribution, and socio-ecological drivers of childhood pneumonia and diarrhea in Queensland. A Bayesian conditional autoregressive model was used to quantify the impacts of socio-ecological factors on both childhood pneumonia and diarrhea at a postal area level. A distinct seasonality of childhood pneumonia and diarrhea was found. Childhood pneumonia and diarrhea mainly distributed in northwest of Queensland. Mount Isa was the high-risk cluster where childhood pneumonia and diarrhea co-distributed. Emergency department visits (EDVs) for pneumonia increased by 3% per 10-mm increase in monthly average rainfall, in wet seasons. In comparison, a 10-mm increase in monthly average rainfall may increase 4% of EDVs for diarrhea. Monthly average temperature was negatively associated with EDVs for childhood diarrhea, in wet seasons. Low socioeconomic index for areas (SEIFA) was associated with high EDVs for childhood pneumonia. Future pneumonia and diarrhea prevention and control measures in Queensland should focus more on Mount Isa.
Resumo:
Malaria has been eliminated from over 40 countries with an additional 39 currently planning for, or committed to, elimination. Information on the likely impact of available interventions, and the required time, is urgently needed to help plan resource allocation. Mathematical modelling has been used to investigate the impact of various interventions; the strength of the conclusions is boosted when several models with differing formulation produce similar data. Here we predict by using an individual-based stochastic simulation model of seasonal Plasmodium falciparum transmission that transmission can be interrupted and parasite reintroductions controlled in villages of 1,000 individuals where the entomological inoculation rate is <7 infectious bites per person per year using chemotherapy and bed net strategies. Above this transmission intensity bed nets and symptomatic treatment alone were not sufficient to interrupt transmission and control the importation of malaria for at least 150 days. Our model results suggest that 1) stochastic events impact the likelihood of successfully interrupting transmission with large variability in the times required, 2) the relative reduction in morbidity caused by the interventions were age-group specific, changing over time, and 3) the post-intervention changes in morbidity were larger than the corresponding impact on transmission. These results generally agree with the conclusions from previously published models. However the model also predicted changes in parasite population structure as a result of improved treatment of symptomatic individuals; the survival probability of introduced parasites reduced leading to an increase in the prevalence of sub-patent infections in semi-immune individuals. This novel finding requires further investigation in the field because, if confirmed, such a change would have a negative impact on attempts to eliminate the disease from areas of moderate transmission.
Resumo:
S. japonicum infection is believed to be endemic in 28 of the 80 provinces of the Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small scale spatial variation in S. japonicum prevalence across the Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geo-located at the barangay level and included in the analysis. The analysis was then stratified geographically for Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ≥ 20 years had significantly higher prevalence of S. japonicum compared with females and children <5 years. The role of the environmental variables differed between regions of the Philippines. S. japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in prevalence of S. japonicum infection in the Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritized to areas identified to be at high risk, but which were underrepresented in our dataset.
Resumo:
Both environmental economists and policy makers have shown a great deal of interest in the effect of pollution abatement on environmental efficiency. In line with the modern resources available, however, no contribution is brought to the environmental economics field with the Markov chain Monte Carlo (MCMC) application, which enables simulation from a distribution of a Markov chain and simulating from the chain until it approaches equilibrium. The probability density functions gained prominence with the advantages over classical statistical methods in its simultaneous inference and incorporation of any prior information on all model parameters. This paper concentrated on this point with the application of MCMC to the database of China, the largest developing country with rapid economic growth and serious environmental pollution in recent years. The variables cover the economic output and pollution abatement cost from the year 1992 to 2003. We test the causal direction between pollution abatement cost and environmental efficiency with MCMC simulation. We found that the pollution abatement cost causes an increase in environmental efficiency through the algorithm application, which makes it conceivable that the environmental policy makers should make more substantial measures to reduce pollution in the near future.
Resumo:
Potential conflicts exist between biodiversity conservation and climate-change mitigation as trade-offs in multiple-use land management. This study aims to evaluate public preferences for biodiversity conservation and climate-change mitigation policy considering respondents’ uncertainty on their choice. We conducted a choice experiment using land-use scenarios in the rural Kushiro watershed in northern Japan. The results showed that the public strongly wish to avoid the extinction of endangered species in preference to climate-change mitigation in the form of carbon sequestration by increasing the area of managed forest. Knowledge of the site and the respondents’ awareness of the personal benefits associated with supporting and regulating services had a positive effect on their preference for conservation plans. Thus, decision-makers should be careful about how they provide ecological information for informed choices concerning ecosystem services tradeoffs. Suggesting targets with explicit indicators will affect public preferences, as well as the willingness of the public to pay for such measures. Furthermore, the elicited-choice probabilities approach is useful for revealing the distribution of relative preferences for incomplete scenarios, thus verifying the effectiveness of indicators introduced in the experiment.
Resumo:
Large number of rooftop Photovoltaics (PVs) have turned traditional passive networks into active networks with intermittent and bidirectional power flow. A community based distribution network grid reinforcement process is proposed to address technical challenges associated with large integration of rooftop PVs. Probabilistic estimation of intermittent PV generation is considered. Depending on the network parameters such as the R/X ratio of distribution feeder, either reactive control from PVs or coordinated control of PVs and Battery Energy Storage (BES) has been proposed. Determination of BES capacity is one of the significant outcomes from the proposed method and several factors such as variation in PV installed capacity as well as participation from community members are analyzed. The proposed approach is convenient for the community members providing them flexibility of managing their integrated PV and BES systems
Resumo:
Genetically diverse RNA viruses like dengue viruses (DENVs)segregate into multiple, genetically distinct, lineages that temporally arise and disappear on a regular basis. Lineage turnover may occur through multiple processes such as, stochastic or due to variations in fitness. To determine the variation of fitness, we measured the distribution of fitness within DENV populations and correlated it with lineage extinction and replacement. The fitness of most members within a population proved lower than the aggregate fitness of populations from which they were drawn, but lineage replacement events were not associated with changes in the distribution of fitness. These data provide insights into variations in fitness of DENV populations, extending our understanding of the complexity between members of individual populations.
Resumo:
This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.
Resumo:
This thesis introduces advanced Demand Response algorithms for residential appliances to provide benefits for both utility and customers. The algorithms are engaged in scheduling appliances appropriately in a critical peak day to alleviate network peak, adverse voltage conditions and wholesale price spikes also reducing the cost of residential energy consumption. Initially, a demand response technique via customer reward is proposed, where the utility controls appliances to achieve network improvement. Then, an improved real-time pricing scheme is introduced and customers are supported by energy management schedulers to actively participate in it. Finally, the demand response algorithm is improved to provide frequency regulation services.
Resumo:
Rating systems are used by many websites, which allow customers to rate available items according to their own experience. Subsequently, reputation models are used to aggregate available ratings in order to generate reputation scores for items. A problem with current reputation models is that they provide solutions to enhance accuracy of sparse datasets not thinking of their models performance over dense datasets. In this paper, we propose a novel reputation model to generate more accurate reputation scores for items using any dataset; whether it is dense or sparse. Our proposed model is described as a weighted average method, where the weights are generated using the normal distribution. Experiments show promising results for the proposed model over state-of-the-art ones on sparse and dense datasets.