894 resultados para preparation program for the professional licensure exam
Resumo:
Introducció: Els errors de medicació són definits com qualsevol incident prevenible que pot causar dany al pacient o donar lloc a una utilització inapropiada dels medicaments, quan aquests estan sota el control dels professionals sanitaris o del pacient. Els errors en la preparació i l’administració de medicació són els més comuns de l’àrea hospitalària i, tot i la llarga cadena per la qual passa el fàrmac, el professional d’infermeria és el últim responsable de l’acció, tenint així, un paper molt important en la seguretat del pacient. Les infermeres dediquen el 40% del temps de la seva jornada laboral en tasques relacionades amb la medicació. Objectiu: Determinar si les infermeres produeixen més errors si treballen amb sistemes de distribució de medicació de stock o en sistemes de distribució unidosis de medicació. Metodologia: Estudi quantitatiu, observacional i descriptiu, on la notificació d’errors (o oportunitats d’error) realitzats per la infermera, en les fases de preparació i administració de medicació, es farà mitjançant un qüestionari autoelaborat. Els elements a identificar seran: el tipus d’error, les causes que poden haver--‐lo produït, la seva potencial gravetat i qui l’ha pogut evitar; així com el tipus de professional que l’ha produït. Altres dades rellevants són: el medicament implicat junt amb la dosis i la via d’administració i el sistema de distribució utilitzat. Mostreig i mostra: El mostreig serà no probabilístic i per conveniència. S’escolliran aquelles infermeres que l’investigador consideri amb les característiques necessàries per participar en l’estudi, així que la mostra estarà formada per les infermeres les quals treballen a la unitat 40 de l’Hospital del Mar i utilitzen un sistema de distribució de medicació de dosis unitàries i les infermeres que treballen a urgències (concretament a l’àrea de nivell dos) de l’Hospital del Mar les quals treballen amb un sistema de distribució de medicació de stock.
Resumo:
BACKGROUND: We assessed expectations to improve cardiovascular disease risk factors (CVD-RF) in participants to a health promotion program. PARTICIPANTS AND METHODS: Blood pressure (BP), blood glucose (BG), blood total cholesterol (TC), body mass index (BMI), and self-reported smoking were assessed in 1,598 volunteers from the general public (men: 40%; mean age: 56.7 +/- 12.7 years) participating in a mobile health promotion program in the Vaud canton, Switzerland. Participants were asked about their expectation to have their CVD-RF improved at a next visit scheduled 2-3 years later. RESULTS: Expectation for improved control was found in 90% of participants with elevated BP, 91% with elevated BG, 45% with elevated TC, 44% who were overweight, and 35% who were smoking. Expectation for TC improvement was reported more often by men, persons with high level of TC, and persons who had consulted a doctor in the past 12 months. Expectations to lose weight and to quit smoking were found more often in younger persons than the older ones. CONCLUSION: Volunteers from the general population participating in a health promotion program expected improved control more often for hypertension and dysglycemia than for dyslipidemia, overweight and smoking.
Resumo:
The choice network revenue management (RM) model incorporates customer purchase behavioras customers purchasing products with certain probabilities that are a function of the offeredassortment of products, and is the appropriate model for airline and hotel network revenuemanagement, dynamic sales of bundles, and dynamic assortment optimization. The underlyingstochastic dynamic program is intractable and even its certainty-equivalence approximation, inthe form of a linear program called Choice Deterministic Linear Program (CDLP) is difficultto solve in most cases. The separation problem for CDLP is NP-complete for MNL with justtwo segments when their consideration sets overlap; the affine approximation of the dynamicprogram is NP-complete for even a single-segment MNL. This is in contrast to the independentclass(perfect-segmentation) case where even the piecewise-linear approximation has been shownto be tractable. In this paper we investigate the piecewise-linear approximation for network RMunder a general discrete-choice model of demand. We show that the gap between the CDLP andthe piecewise-linear bounds is within a factor of at most 2. We then show that the piecewiselinearapproximation is polynomially-time solvable for a fixed consideration set size, bringing itinto the realm of tractability for small consideration sets; small consideration sets are a reasonablemodeling tradeoff in many practical applications. Our solution relies on showing that forany discrete-choice model the separation problem for the linear program of the piecewise-linearapproximation can be solved exactly by a Lagrangian relaxation. We give modeling extensionsand show by numerical experiments the improvements from using piecewise-linear approximationfunctions.
Resumo:
T his report presents population estimates for July 1, 1972 and provisional estimates for July 1, 1973, for counties and metropolitan areas prepared under the auspices of the Federal State Cooperative Program for Local Population Estimates. The objective of this program. is the development and publication of State - prepared estimates of the population of counties using uniform procedures largely standardized for data input and methodology. The methods used have been mutually agreed upon by the individual States and the Bureau of the Census on the basis of a test of methods against the 1970 census. For a more detailed description of the program.
Resumo:
This report presents population estimates for July 1, 1973 and provisional estimates for July 1, for counties and metropolitan areas prepared under the auspices of the Federal State Cooperative Program for Local Population Estimates. The objective of this program. is the development and publication of State - prepared estimates of the population of counties using uniform procedures largely standardized for data input and methodology. The methods used have been mutually agreed upon by the individual States and the Bureau of the Census on the basis of a test of methods against the 1970 census. For a more detailed description of the program.
Resumo:
This issue review provides an overview of funds dispersed for the soil and water conservation cost share program in the Department of Agriculture and Land Stewardship, DALS.
Resumo:
This report contains information about Iowa's public drinking water program for the calendar year 2014. Included in the report are descriptions of Iowa's systems, monitoring and reporting requirements of the systems, and violations incurred during the year. This report meets the federal Safe Drinking Water Act's requirement of an annual report on violations of national primary drinking water regulations by public water supply systems in Iowa.
Resumo:
According to Iowa crash records, almost 10% of all crashes in Iowa occur at commercial driveways. Most of these crashes occur on arterials within municipalities. In recent years, nearly a quarter of these crashes have occurred in the Des Moines metropolitan area. This makes the Des Moines metropolitan area a prime candidate for improved access management. Case study research in Iowa has shown that access management is an extremely effective highway safety tool—well-managed routes are, on average, 40% safer than poorly managed routes. The Des Moines metropolitan area has many miles of four-lane, undivided arterials constructed when less was known about the importance of managing access to adjacent land development. This project involved a cooperative effort of the Des Moines Area Metropolitan Planning Organization (Des Moines Area MPO) and the Center for Transportation Research and Education (CTRE) at Iowa State University to develop a comprehensive access management study and program for the Des Moines metropolitan area. The goal of the study is to use the knowledge developed to make improvements that will reduce access-related crashes. It is also anticipated that this project will help local officials make better decisions about access management so that future safety and operational problems can be avoided.
Resumo:
This study examines the effectiveness of Iowa’s Driver Improvement Program (DIP), measured as the reduction in the number of driver convictions subsequent to the DIP. The analysis involved a random sample of 9,055 drivers who had been instructed to attend DIP and corresponding data on driver convictions, crashes, and driver education training history that were provided by the Iowa Motor Vehicle Division. The sample was divided into two groups based on DIP outcome: satisfactory or unsatisfactory completion. Two evaluation periods were considered: one year after the DIP date (probation period) and the period from the 13th to 18th month after the DIP date. The evaluation of Iowa’s DIP showed that there is evidence of effectiveness in terms of reducing driver convictions subsequent to attending the DIP. Among the 6,790 (75%) drivers who completed the course satisfactorily, 73% of drivers had no actions and 93% were not involved in a crash during the probation period. Statistical tests confirmed these numbers. However, the positive effect of satisfactory completion of DIP on survival time (that is, the time until the first conviction) was not statistically significant 13 months after the DIP date. Econometric model estimation results showed that, regardless of the DIP outcome, the likelihood of conviction occurrence and frequency of subsequent convictions depends on other factors, such as age, driver history, and DIP location, and interaction effects among these factors. Low-cost, early intervention measures are suggested to enhance the effectiveness of Iowa’s DIP. These measures can include advisory and warning letters (customized based on the driver’s age) sent within the first year after the DIP date and soon after the end of the probation period, as well as a closer examination of DIP instruction across the 17 community colleges that host the program. Given the large number of suspended drivers who continued to drive, consideration should also be given to measures to reduce driving while suspended offenses.
Resumo:
The Watershed Improvement Fund and the Iowa Watershed Improvement Review Board (WIRB) were created in 2005. This statute is now codified in Iowa Code Chapter 466A. The fifteen-member Board conducted seven meetings throughout the year in-person or via teleconference. Meetings were held January 23, February 27, April 17, June 18, July 24, September 25 and December 17. Attachment 1 lists the board members and their organization affiliation. The Board completed one Request For Applications (RFA) for the Watershed Improvement Fund. The RFA was announced November 6, 2014 and closed December 29, 2014. December 29, 2014 Closing Date Request For Applications: The Board received 16 applications in response to this RFA. These applications requested $2.8 million in Watershed Improvement Funds and leveraged an additional $9.1 million for a total of $11.9 million of watershed project activity proposed. After reviewing and ranking the applications individually from this RFA, the Board met and selected eight applications for funding. The eight applications were approved for $1,249,861 of Watershed Improvement Funds. Data on the eight selected projects in this RFA include the following: • These projects included portions of 12 counties. • The $1.2 million requested of Watershed Improvement Funds leveraged an additional $4.2 million for a total of $5.4 million in watershed improvements. • Approved projects ranged in funding from $41,980 to $250,000. Attachment 2 lists the approved projects’ name, applicant name, project length, county or counties where located, and funding amount for the RFA. Attachment 3 is a map showing the status of all projects funded since inception of the program. At the end of 2015 there are 111 completed projects and 39 active projects. In cooperation with the Treasurer of State, the WIRB submitted the 2015 year-end report for the Rebuild Iowa Infrastructure Fund to the Legislative Services Agency and the Department of Management. Attachment 4 contains the 2015 annual progress reports submitted from active projects or projects finished in 2015.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. From 1983 to 2014, this monitoring effort was known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Beginning in 2015, the only statewide fish contaminant-monitoring program in Iowa was changed to the Iowa Fish Tissue Monitoring Program (IFTMP). The IFTMP is administered by IDNR and the tissue analyses are completed at the SHL. Historically, the data generated from the IFTMP have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The IFTMP incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. From 1983 to 2014, this monitoring effort was known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Beginning in 2015, the only statewide fish contaminant-monitoring program in Iowa was changed to the Iowa Fish Tissue Monitoring Program (IFTMP). The IFTMP is administered by IDNR and the analyses are completed at the SHL. Historically, the data generated from the IFTMP have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The IFTMP incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) trend, 3) follow-up, 4) turtle, and 5) random.